Securing the Digital Perimeter: A Comprehensive Intrusion Detection System with Ensemble Learning

入侵检测系统 计算机科学 周长 集成学习 人工智能 计算机安全 数学 几何学
作者
R. Latha,S. John Justin Thangaraj
标识
DOI:10.1109/icdsaai59313.2023.10452636
摘要

The article introduces an all-inclusive Intrusion Detection System (IDS) for anomaly and misuse detection to handle rising computer network cybersecurity risks. Our intrusion detection system (IDS) design includes anomaly detection using the Self-Organizing Map (SOM) and abuse detection utilizing the Gradient Boosting Algorithm and AdaBoosting Algorithm as ensemble classifiers. For this, we use the large and diverse CICIDS dataset. SOM-based anomaly detection is adaptable to CICIDS dataset patterns. The SOM detects slight anomalies that may indicate intrusions by unsupervised learning of the dynamic nature of network functioning. The modern network is flexible despite complicated and dynamic traffic. The abuse detection module detects dataset attacks well using the Gradient Boosting Algorithm and AdaBoosting Algorithm. Ensemble techniques use multiple weak classifiers to enhance detection accuracy. The system's success against old and new cyber-attacks shows its adaptability. Our intelligent Intrusion Detection System (IDS) study found amazing findings for network anomaly and abuse detection. We leverage the huge dataset in our IDS architecture. Self-organizing map anomaly detection Gradient Boosting Algorithm and AdaBoosting Algorithm abuse detection are powerful. The CICIDS dataset is appropriate for testing the system's cyber risk identification and categorization due to its diversity and real-world application. After testing with the dataset and cutting-edge ensemble learning algorithms, the recommended intrusion detection system design appears to solve practical intrusion detection problems. These ensemble algorithms provide a strong defense, demonstrating the system's ability to warn cybersecurity analysts swiftly and accurately. Research could improve system scalability for big, varied networks and investigate fresh feature engineering methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
5秒前
LL发布了新的文献求助10
7秒前
CodeCraft应助能干的孤丝采纳,获得10
8秒前
小丽酱发布了新的文献求助10
8秒前
阳光刺眼发布了新的文献求助10
9秒前
bellaluna完成签到 ,获得积分10
9秒前
田様应助努力的史迪仔采纳,获得10
11秒前
chenn完成签到 ,获得积分10
11秒前
可靠之玉完成签到,获得积分10
11秒前
gmjinfeng完成签到,获得积分0
12秒前
科研通AI2S应助小丽酱采纳,获得10
15秒前
Orange应助阳光刺眼采纳,获得10
16秒前
稳重雁易完成签到 ,获得积分10
17秒前
小马甲应助liu星雨采纳,获得10
18秒前
小丸子发布了新的文献求助10
22秒前
炙热尔阳完成签到 ,获得积分10
22秒前
华仔应助昏睡的傻姑采纳,获得10
23秒前
26秒前
阳光刺眼发布了新的文献求助10
31秒前
xmx完成签到 ,获得积分10
32秒前
34秒前
小丸子完成签到,获得积分10
34秒前
36秒前
39秒前
雨sunsunsun完成签到 ,获得积分10
39秒前
Sandy完成签到,获得积分10
39秒前
汉堡包应助摸电门的猫采纳,获得10
39秒前
40秒前
BLL发布了新的文献求助80
42秒前
尼i发布了新的文献求助10
42秒前
关关完成签到 ,获得积分10
42秒前
Zlt发布了新的文献求助10
43秒前
LU完成签到 ,获得积分10
43秒前
路痴发布了新的文献求助10
45秒前
47秒前
早睡身体好完成签到,获得积分10
49秒前
激昂的幻梦完成签到,获得积分10
49秒前
Hello应助njusdf采纳,获得10
49秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070