Hybrid Parallel Fuzzy CNN Paradigm: Unmasking Intricacies for Accurate Brain MRI Insights

计算机科学 模糊逻辑 人工智能 机器学习
作者
Saeed Iqbal,Adnan N. Qureshi,Khursheed Aurangzeb,Musaed Alhussein,Shui‐Hua Wang,Muhammad Shahid Anwar,Faheem Khan
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 5533-5544 被引量:4
标识
DOI:10.1109/tfuzz.2024.3372608
摘要

The Hybrid Parallel Fuzzy CNN (HP-FCNN) is a ground-breaking method for medical image analysis that combines the interpretive capacity of fuzzy logic with the capabilities of a convolutional neural network (CNN). This novel combination tackles problems related to brain image processing, reducing problems such as noise and hazy borders that are common in Magnetic Resonance Imaging (MRI). Unlike other CNN models, HP-FCNN combines fine-grained fuzzy representations with crisp CNN features, improving interpretability by displaying hidden layers. This insight into activation patterns facilitates comprehension of the decision-making processes necessary for the diagnosis of brain diseases. HP-FCNN outperforms other pretrained models (ResNet, DenseNet, VGG, and EfficientNet) on measures such as the confusion matrix and AUC-ROC, according to comparative assessments. Furthermore, the addition of Adaptive Class Activation Mapping (AD-CAM) enhances HPFCNN by identifying salient features during backpropagation and bolstering the network's capacity to enhance brain illness diagnosis and treatment planning. Our methodology, incorporating AD-CAM, yielded compelling results with a 96.86 F1-Score, 96.41 AUC, and 96.81 Accuracy, showcasing the effectiveness of our approach in achieving high-performance metrics in brain MRI analysis. With a 15% increase in accuracy, a 10% increase in sensitivity, and a 12% decrease in false positives, HP-FCNN outperforms its predecessors. These impressive advancements represent a quantifiable breakthrough in the capabilities of medical image processing technology; they are more than just anecdotal evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lesyeuxdexx完成签到 ,获得积分10
1秒前
香蕉觅云应助ZEM采纳,获得10
1秒前
1秒前
顺利毕业呀完成签到,获得积分10
2秒前
小夫完成签到,获得积分10
2秒前
yanyan完成签到,获得积分10
2秒前
skysleeper完成签到,获得积分10
2秒前
想去玩应助sxw采纳,获得10
3秒前
3秒前
苗条荧发布了新的文献求助10
3秒前
Amy完成签到 ,获得积分10
3秒前
fzzzzlucy发布了新的文献求助10
4秒前
淡然一兰发布了新的文献求助10
4秒前
4秒前
钱塘郎中完成签到,获得积分0
4秒前
heavenhorse完成签到,获得积分10
4秒前
fengxj完成签到 ,获得积分10
5秒前
善良的沛山完成签到,获得积分10
5秒前
大口吃肉完成签到,获得积分10
5秒前
桐桐应助墨色的夕阳采纳,获得10
5秒前
布丁完成签到 ,获得积分10
6秒前
LL来了完成签到 ,获得积分10
7秒前
疯狂的科研小羊完成签到 ,获得积分10
7秒前
QQ发布了新的文献求助10
7秒前
小闪光完成签到 ,获得积分10
7秒前
温柔的夜柳完成签到,获得积分10
8秒前
雅2018发布了新的文献求助10
9秒前
9秒前
9秒前
淡然冬灵应助香蕉秋寒采纳,获得20
9秒前
月笙完成签到,获得积分10
9秒前
Paul_Geromeng发布了新的文献求助10
10秒前
英姑应助haohao采纳,获得10
10秒前
阳雾完成签到,获得积分10
10秒前
斯文败类应助紫苏采纳,获得10
10秒前
qnqqq完成签到,获得积分10
11秒前
hm完成签到,获得积分20
11秒前
默默松鼠完成签到,获得积分10
11秒前
12秒前
江沅完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303478
求助须知:如何正确求助?哪些是违规求助? 2937781
关于积分的说明 8484216
捐赠科研通 2611787
什么是DOI,文献DOI怎么找? 1426266
科研通“疑难数据库(出版商)”最低求助积分说明 662548
邀请新用户注册赠送积分活动 647059