超级电容器
化学
电容
十二烷基硫酸钠
化学工程
电极
相(物质)
纳米颗粒
钨
形态学(生物学)
阳极氧化
纳米技术
色谱法
材料科学
有机化学
物理化学
铝
生物
工程类
遗传学
作者
Qianqian Liu,Haolan Xu,Zikang He,Wei Cai,Zhenhao Wang,Guohua Li,Jing Gao
标识
DOI:10.1021/acs.inorgchem.3c03266
摘要
High pseudocapacitive activity of hydrated tungsten oxides (WO3·xH2O, x = 1 or 2) makes them promising materials for supercapacitors (SCs). During their synthesis, additives such as complexing agents and surfactants generally can only affect the morphology and/or size of the products. Here, we demonstrate that not only morphology and size of WO3·xH2O were affected, its phase composition could also change from WO3·2H2O to WO3·H2O simply by increasing the amount of sodium dodecyl sulfate (SDS) during its anodization synthesis. To the best of our knowledge, such a phenomenon has not been reported before. In addition, SDS introduced a special structure to the products, i.e., WO3·xH2O nanoplatelets constructed from nanoparticle multilayers with abundant nanogaps between the multilayers, which further arranged into nanoflowers with increased amounts of SDS. Benefiting from such a structure, low internal resistance, enhanced stability, and fast redox kinetics, the as-obtained WO3·xH2O/W-3 self-supporting electrode showed a high volumetric specific capacitance of 1402.92 F cm–3 and good cycling stability (a capacity retention of 106% after 10 000 cycles). In addition, an all-solid-state asymmetric SC device based on WO3·xH2O/W-3 delivered high a volumetric energy density of 44.0 mW h cm–3 at 0.5 W cm–3. Our method demonstrates a potential way to fabricate excellent self-supporting electrodes for SCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI