Integration of harvester trajectory and satellite imagery for large-scale winter wheat mapping using deep positive and unlabeled learning

基本事实 比例(比率) 人工智能 弹道 深度学习 计算机科学 归一化差异植被指数 植被(病理学) 遥感 卷积神经网络 领域(数学) 卫星 机器学习 模式识别(心理学) 环境科学 叶面积指数 地图学 数学 地理 生态学 工程类 天文 纯数学 航空航天工程 病理 物理 生物 医学
作者
Xingguo Xiong,Jie Yang,Renhai Zhong,Jinwei Dong,Jingfeng Huang,K. C. Ting,Yibin Ying,Tao Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108487-108487
标识
DOI:10.1016/j.compag.2023.108487
摘要

Limited accurate ground truth labels are the primary constraint for data-driven modeling analysis of large-scale crop mapping. Existing labeling methods largely rely on field surveys, visual interpretation, and historical ground information. These labor-intensive approaches are often limited by spatiotemporal heterogeneity of crop distribution and encounter the challenge of gathering extensive crop labels. The massive operating trajectories of agricultural machinery contain precise location information of the crop fields, providing a new source for accurate crop labels at a large spatial scale. This study develops a large-scale crop mapping workflow through widespread harvester trajectory and 10 m Sentinel-2 imagery. The trajectory-based automatic labeling method is developed to generate 287,533 winter wheat labels by jointly using harvester coordinates and satellite images. These generated one-class ground labels are further used to develop positive and unlabeled learning based deep learning models for winter wheat mapping. The Positive and Unlabeled Learning-based Convolutional Neural Network (PUL-CNN) outperforms the other four one-class based classifiers with an F1 score of 94.4 % at 12 study sites. The estimated county-level winter wheat acreage agrees well with census data with R2 of 0.86 in the overall study region. The interpretation analysis based on the Shapley Additive Explanation method shows the heading and greening stages are the critical periods for wheat mapping, aligning well with the separability in Normalized Difference Vegetation Index (NDVI) curves. The results of winter wheat mapping demonstrate the integration of harvester trajectory and remote sensing data facilitates large-scale winter wheat mapping. To the best of our knowledge, this is the first study that fuses operating trajectories of agricultural machinery and satellite images for large-scale crop mapping based on the deep positive and unlabeled learning approach. This study could be possibly applied for better understanding the land cover and land use changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郎帅完成签到,获得积分10
2秒前
小太阳完成签到,获得积分10
2秒前
3秒前
迷人的林林完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
是小浩啊完成签到,获得积分10
6秒前
JamesPei应助11111采纳,获得10
12秒前
杨佳关注了科研通微信公众号
13秒前
星辰大海应助lxy采纳,获得10
13秒前
15秒前
Owen应助鲜艳的熊猫采纳,获得10
15秒前
15秒前
跳跃凡桃完成签到 ,获得积分10
16秒前
16秒前
和谐听白完成签到 ,获得积分10
18秒前
721关闭了721文献求助
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
zhaomr完成签到,获得积分10
21秒前
mikasa发布了新的文献求助10
22秒前
23秒前
23秒前
鲜艳的熊猫完成签到,获得积分10
24秒前
25秒前
25秒前
yyer发布了新的文献求助10
26秒前
其11发布了新的文献求助20
26秒前
LHT发布了新的文献求助10
26秒前
28秒前
lxy发布了新的文献求助10
28秒前
Zjjj0812完成签到 ,获得积分10
29秒前
huhu完成签到,获得积分10
29秒前
30秒前
cs完成签到,获得积分10
31秒前
搜集达人应助mikasa采纳,获得30
33秒前
天天快乐应助lqtnb采纳,获得10
33秒前
hhhh完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425506
求助须知:如何正确求助?哪些是违规求助? 4539540
关于积分的说明 14168368
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435344
关于科研通互助平台的介绍 1412740