Integration of harvester trajectory and satellite imagery for large-scale winter wheat mapping using deep positive and unlabeled learning

基本事实 比例(比率) 人工智能 弹道 深度学习 计算机科学 归一化差异植被指数 植被(病理学) 遥感 卷积神经网络 领域(数学) 卫星 机器学习 模式识别(心理学) 环境科学 叶面积指数 地图学 数学 地理 生态学 工程类 天文 纯数学 航空航天工程 病理 物理 生物 医学
作者
Xingguo Xiong,Jie Yang,Renhai Zhong,Jinwei Dong,Jingfeng Huang,K. C. Ting,Yibin Ying,Tao Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108487-108487
标识
DOI:10.1016/j.compag.2023.108487
摘要

Limited accurate ground truth labels are the primary constraint for data-driven modeling analysis of large-scale crop mapping. Existing labeling methods largely rely on field surveys, visual interpretation, and historical ground information. These labor-intensive approaches are often limited by spatiotemporal heterogeneity of crop distribution and encounter the challenge of gathering extensive crop labels. The massive operating trajectories of agricultural machinery contain precise location information of the crop fields, providing a new source for accurate crop labels at a large spatial scale. This study develops a large-scale crop mapping workflow through widespread harvester trajectory and 10 m Sentinel-2 imagery. The trajectory-based automatic labeling method is developed to generate 287,533 winter wheat labels by jointly using harvester coordinates and satellite images. These generated one-class ground labels are further used to develop positive and unlabeled learning based deep learning models for winter wheat mapping. The Positive and Unlabeled Learning-based Convolutional Neural Network (PUL-CNN) outperforms the other four one-class based classifiers with an F1 score of 94.4 % at 12 study sites. The estimated county-level winter wheat acreage agrees well with census data with R2 of 0.86 in the overall study region. The interpretation analysis based on the Shapley Additive Explanation method shows the heading and greening stages are the critical periods for wheat mapping, aligning well with the separability in Normalized Difference Vegetation Index (NDVI) curves. The results of winter wheat mapping demonstrate the integration of harvester trajectory and remote sensing data facilitates large-scale winter wheat mapping. To the best of our knowledge, this is the first study that fuses operating trajectories of agricultural machinery and satellite images for large-scale crop mapping based on the deep positive and unlabeled learning approach. This study could be possibly applied for better understanding the land cover and land use changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助果实采纳,获得10
刚刚
猫尔儿发布了新的文献求助200
刚刚
罗小黑完成签到,获得积分20
1秒前
1秒前
1秒前
蟹黄包TT关注了科研通微信公众号
1秒前
思源应助瘦瘦寄风采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
Lucas应助vip668采纳,获得10
4秒前
qingrao发布了新的文献求助10
4秒前
4秒前
浮游应助小羊的大脸采纳,获得10
4秒前
4秒前
5秒前
张炎镕发布了新的文献求助10
5秒前
科研通AI5应助Rufina0720采纳,获得10
5秒前
5秒前
5秒前
6秒前
华仔应助温暖的书琴采纳,获得10
6秒前
未来EBM发布了新的文献求助10
6秒前
Desheng完成签到,获得积分10
6秒前
zyh发布了新的文献求助10
6秒前
6秒前
6秒前
学西学习完成签到,获得积分10
6秒前
7秒前
华仔应助xiaoxiao1992采纳,获得10
7秒前
7秒前
邢绿凝发布了新的文献求助150
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
迪迦发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111405
求助须知:如何正确求助?哪些是违规求助? 4319643
关于积分的说明 13458882
捐赠科研通 4150251
什么是DOI,文献DOI怎么找? 2274053
邀请新用户注册赠送积分活动 1276096
关于科研通互助平台的介绍 1214317