Integration of harvester trajectory and satellite imagery for large-scale winter wheat mapping using deep positive and unlabeled learning

基本事实 比例(比率) 人工智能 弹道 深度学习 计算机科学 归一化差异植被指数 植被(病理学) 遥感 卷积神经网络 领域(数学) 卫星 机器学习 模式识别(心理学) 环境科学 叶面积指数 地图学 数学 地理 生态学 工程类 天文 纯数学 航空航天工程 病理 物理 生物 医学
作者
Xingguo Xiong,Jie Yang,Renhai Zhong,Jinwei Dong,Jingfeng Huang,K. C. Ting,Yibin Ying,Tao Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108487-108487
标识
DOI:10.1016/j.compag.2023.108487
摘要

Limited accurate ground truth labels are the primary constraint for data-driven modeling analysis of large-scale crop mapping. Existing labeling methods largely rely on field surveys, visual interpretation, and historical ground information. These labor-intensive approaches are often limited by spatiotemporal heterogeneity of crop distribution and encounter the challenge of gathering extensive crop labels. The massive operating trajectories of agricultural machinery contain precise location information of the crop fields, providing a new source for accurate crop labels at a large spatial scale. This study develops a large-scale crop mapping workflow through widespread harvester trajectory and 10 m Sentinel-2 imagery. The trajectory-based automatic labeling method is developed to generate 287,533 winter wheat labels by jointly using harvester coordinates and satellite images. These generated one-class ground labels are further used to develop positive and unlabeled learning based deep learning models for winter wheat mapping. The Positive and Unlabeled Learning-based Convolutional Neural Network (PUL-CNN) outperforms the other four one-class based classifiers with an F1 score of 94.4 % at 12 study sites. The estimated county-level winter wheat acreage agrees well with census data with R2 of 0.86 in the overall study region. The interpretation analysis based on the Shapley Additive Explanation method shows the heading and greening stages are the critical periods for wheat mapping, aligning well with the separability in Normalized Difference Vegetation Index (NDVI) curves. The results of winter wheat mapping demonstrate the integration of harvester trajectory and remote sensing data facilitates large-scale winter wheat mapping. To the best of our knowledge, this is the first study that fuses operating trajectories of agricultural machinery and satellite images for large-scale crop mapping based on the deep positive and unlabeled learning approach. This study could be possibly applied for better understanding the land cover and land use changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TL完成签到,获得积分10
刚刚
科研通AI6应助博修采纳,获得10
刚刚
刚刚
nanfang完成签到 ,获得积分10
刚刚
李爱国应助Jasper采纳,获得30
刚刚
star009完成签到,获得积分10
1秒前
科研通AI6应助23xyke采纳,获得10
1秒前
科研通AI6应助冷酷傲易采纳,获得20
1秒前
小武完成签到,获得积分10
1秒前
科研通AI5应助柒柒_BX采纳,获得10
1秒前
2秒前
啦啦啦完成签到,获得积分10
2秒前
2秒前
dlindl完成签到,获得积分10
2秒前
xjcy应助干净海秋采纳,获得10
2秒前
菜菜发布了新的文献求助10
2秒前
3秒前
614521发布了新的文献求助10
3秒前
aki发布了新的文献求助10
3秒前
俏皮易绿完成签到 ,获得积分10
3秒前
4秒前
秀儿完成签到,获得积分10
4秒前
果粒红豆豆完成签到,获得积分10
4秒前
小林关注了科研通微信公众号
5秒前
5秒前
萌妹发布了新的文献求助10
5秒前
mei发布了新的文献求助10
5秒前
hmv发布了新的文献求助10
5秒前
苏浩然完成签到,获得积分10
5秒前
搜集达人应助xL采纳,获得10
6秒前
祖逸凡完成签到,获得积分10
6秒前
星辰大海应助iveuplife采纳,获得10
7秒前
丁浩伦发布了新的文献求助10
7秒前
7秒前
zhangj696应助zl52采纳,获得20
7秒前
西大喜完成签到,获得积分10
7秒前
8秒前
Candy发布了新的文献求助10
8秒前
9秒前
爆米花应助青夏采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227