Integration of harvester trajectory and satellite imagery for large-scale winter wheat mapping using deep positive and unlabeled learning

基本事实 比例(比率) 人工智能 弹道 深度学习 计算机科学 归一化差异植被指数 植被(病理学) 遥感 卷积神经网络 领域(数学) 卫星 机器学习 模式识别(心理学) 环境科学 叶面积指数 地图学 数学 地理 生态学 工程类 天文 纯数学 航空航天工程 病理 物理 生物 医学
作者
Xingguo Xiong,Jie Yang,Renhai Zhong,Jinwei Dong,Jingfeng Huang,K. C. Ting,Yibin Ying,Tao Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108487-108487
标识
DOI:10.1016/j.compag.2023.108487
摘要

Limited accurate ground truth labels are the primary constraint for data-driven modeling analysis of large-scale crop mapping. Existing labeling methods largely rely on field surveys, visual interpretation, and historical ground information. These labor-intensive approaches are often limited by spatiotemporal heterogeneity of crop distribution and encounter the challenge of gathering extensive crop labels. The massive operating trajectories of agricultural machinery contain precise location information of the crop fields, providing a new source for accurate crop labels at a large spatial scale. This study develops a large-scale crop mapping workflow through widespread harvester trajectory and 10 m Sentinel-2 imagery. The trajectory-based automatic labeling method is developed to generate 287,533 winter wheat labels by jointly using harvester coordinates and satellite images. These generated one-class ground labels are further used to develop positive and unlabeled learning based deep learning models for winter wheat mapping. The Positive and Unlabeled Learning-based Convolutional Neural Network (PUL-CNN) outperforms the other four one-class based classifiers with an F1 score of 94.4 % at 12 study sites. The estimated county-level winter wheat acreage agrees well with census data with R2 of 0.86 in the overall study region. The interpretation analysis based on the Shapley Additive Explanation method shows the heading and greening stages are the critical periods for wheat mapping, aligning well with the separability in Normalized Difference Vegetation Index (NDVI) curves. The results of winter wheat mapping demonstrate the integration of harvester trajectory and remote sensing data facilitates large-scale winter wheat mapping. To the best of our knowledge, this is the first study that fuses operating trajectories of agricultural machinery and satellite images for large-scale crop mapping based on the deep positive and unlabeled learning approach. This study could be possibly applied for better understanding the land cover and land use changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
FangChen发布了新的文献求助10
2秒前
科研小白应助小脸神神采纳,获得50
2秒前
3秒前
3秒前
海拾月完成签到,获得积分10
4秒前
K先生发布了新的文献求助10
5秒前
李康佳完成签到,获得积分10
5秒前
可爱的函函应助11111采纳,获得10
5秒前
科研通AI6应助岚婘采纳,获得10
5秒前
6秒前
小海狸完成签到,获得积分20
6秒前
Huibo完成签到,获得积分10
6秒前
开朗成风完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
李健应助又又采纳,获得10
8秒前
8秒前
幻想小蜜蜂完成签到,获得积分10
8秒前
ajiduo完成签到,获得积分10
8秒前
海拾月发布了新的文献求助30
8秒前
小海狸发布了新的文献求助10
8秒前
英姑应助无有采纳,获得10
10秒前
11秒前
聂先生完成签到,获得积分10
11秒前
诗谙发布了新的文献求助30
11秒前
无花果应助美丽谷槐采纳,获得10
11秒前
大个应助白煮蛋蘸酱油采纳,获得10
12秒前
努力加油发布了新的文献求助10
12秒前
秦文平完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
t250完成签到,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593