Integration of harvester trajectory and satellite imagery for large-scale winter wheat mapping using deep positive and unlabeled learning

基本事实 比例(比率) 人工智能 弹道 深度学习 计算机科学 归一化差异植被指数 植被(病理学) 遥感 卷积神经网络 领域(数学) 卫星 机器学习 模式识别(心理学) 环境科学 叶面积指数 地图学 数学 地理 生态学 工程类 天文 纯数学 航空航天工程 病理 物理 生物 医学
作者
Xingguo Xiong,Jie Yang,Renhai Zhong,Jinwei Dong,Jingfeng Huang,K. C. Ting,Yibin Ying,Tao Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108487-108487
标识
DOI:10.1016/j.compag.2023.108487
摘要

Limited accurate ground truth labels are the primary constraint for data-driven modeling analysis of large-scale crop mapping. Existing labeling methods largely rely on field surveys, visual interpretation, and historical ground information. These labor-intensive approaches are often limited by spatiotemporal heterogeneity of crop distribution and encounter the challenge of gathering extensive crop labels. The massive operating trajectories of agricultural machinery contain precise location information of the crop fields, providing a new source for accurate crop labels at a large spatial scale. This study develops a large-scale crop mapping workflow through widespread harvester trajectory and 10 m Sentinel-2 imagery. The trajectory-based automatic labeling method is developed to generate 287,533 winter wheat labels by jointly using harvester coordinates and satellite images. These generated one-class ground labels are further used to develop positive and unlabeled learning based deep learning models for winter wheat mapping. The Positive and Unlabeled Learning-based Convolutional Neural Network (PUL-CNN) outperforms the other four one-class based classifiers with an F1 score of 94.4 % at 12 study sites. The estimated county-level winter wheat acreage agrees well with census data with R2 of 0.86 in the overall study region. The interpretation analysis based on the Shapley Additive Explanation method shows the heading and greening stages are the critical periods for wheat mapping, aligning well with the separability in Normalized Difference Vegetation Index (NDVI) curves. The results of winter wheat mapping demonstrate the integration of harvester trajectory and remote sensing data facilitates large-scale winter wheat mapping. To the best of our knowledge, this is the first study that fuses operating trajectories of agricultural machinery and satellite images for large-scale crop mapping based on the deep positive and unlabeled learning approach. This study could be possibly applied for better understanding the land cover and land use changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ldy完成签到 ,获得积分10
1秒前
qqqq完成签到,获得积分10
2秒前
4秒前
5秒前
朴素亦绿完成签到,获得积分10
5秒前
超级绫完成签到 ,获得积分10
6秒前
6秒前
HPP123发布了新的文献求助10
7秒前
Criminology34应助端庄亦巧采纳,获得20
7秒前
一灯大师发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
清澈发布了新的文献求助10
10秒前
11秒前
琦琦z完成签到,获得积分10
11秒前
科研通AI6.1应助郑浚杳采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
三三三完成签到,获得积分20
14秒前
健康的梦旋完成签到,获得积分10
14秒前
17秒前
zwj28完成签到,获得积分10
18秒前
顺利毕业完成签到 ,获得积分10
18秒前
18秒前
Wang关注了科研通微信公众号
20秒前
23秒前
魁梧的凌瑶完成签到,获得积分10
24秒前
清澈完成签到,获得积分10
24秒前
HEROER发布了新的文献求助10
24秒前
英姑应助顺利的囧采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
wy.he应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861