CTVSR: Collaborative Spatial–Temporal Transformer for Video Super-Resolution

计算机科学 安全性令牌 人工智能 时间分辨率 图像分辨率 变压器 保险丝(电气) 计算机视觉 模式识别(心理学) 计算机安全 量子力学 电气工程 物理 工程类 电压
作者
Jun Tang,Chen-Yan Lu,zhoufeng liu,Jiale Li,Hang Dai,Yong Ding
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 5018-5032 被引量:1
标识
DOI:10.1109/tcsvt.2023.3340439
摘要

Video super-resolution (VSR) is important in video processing for reconstructing high-definition image sequences from corresponding continuous and highly-related video frames. However, existing VSR methods have limitations in fusing spatial-temporal information. Some methods only fuse spatial-temporal information on a limited range of total input sequences, while others adopt a recurrent strategy that gradually attenuates the spatial information. While recent advances in VSR utilize Transformer-based methods to improve the quality of the upscaled videos, these methods require significant computational resources to model the long-range dependencies, which dramatically increases the model complexity. To address these issues, we propose a Collaborative Transformer for Video Super-Resolution (CTVSR). The proposed method integrates the strengths of Transformer-based and recurrent-based models by concurrently assimilating the spatial information derived from multi-scale receptive fields and the temporal information acquired from temporal trajectories. In particular, we propose a Spatial Enhanced Network (SEN) with two key components: Token Dropout Attention (TDA) and Deformable Multi-head Cross Attention (DMCA). TDA focuses on the key regions to extract more informative features, and DMCA employs deformable cross attention to gather information from adjacent frames. Moreover, we introduce a Temporal-trajectory Enhanced Network (TEN) that computes the similarity of a given token with temporally-related tokens in the temporal trajectory, which is different from previous methods that evaluate all tokens within the temporal dimension. With comprehensive quantitative and qualitative experiments on four widely-used VSR benchmarks, the proposed CTVSR achieves competitive performance with relatively low computational consumption and high forward speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助jase采纳,获得10
刚刚
刚刚
Jouleken完成签到,获得积分10
刚刚
博修发布了新的文献求助10
1秒前
LI完成签到,获得积分10
1秒前
2秒前
tree发布了新的文献求助10
2秒前
2秒前
乐乐应助rengar采纳,获得10
2秒前
orixero应助年年采纳,获得10
2秒前
青词完成签到,获得积分10
3秒前
3秒前
4秒前
卡齐娜发布了新的文献求助10
4秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
pcr发布了新的文献求助10
4秒前
Li发布了新的文献求助10
5秒前
5秒前
yyy发布了新的文献求助10
5秒前
解天问完成签到 ,获得积分10
5秒前
131343完成签到,获得积分10
5秒前
隐形曼青应助hmx采纳,获得10
5秒前
Song发布了新的文献求助10
6秒前
研友_5476B5发布了新的文献求助10
6秒前
愉快秀完成签到,获得积分20
6秒前
6秒前
丘比特应助猫好好采纳,获得20
6秒前
kkyy发布了新的文献求助10
7秒前
8秒前
8秒前
叶枫完成签到,获得积分10
8秒前
田様应助meimingzi采纳,获得10
9秒前
9秒前
九离发布了新的文献求助50
9秒前
调皮铸海发布了新的文献求助10
10秒前
迷人的冥完成签到,获得积分10
10秒前
CR7应助moon采纳,获得20
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650