Artificial intelligence‐aided diagnostic imaging: A state‐of‐the‐art technique in precancerous screening

彩色内窥镜 医学 人工智能 病变 图像质量 病理 计算机科学 内科学 结肠镜检查 结直肠癌 癌症 图像(数学)
作者
Yang‐Bor Lu,Si‐Cun Lu,Fudong Li,Puo‐Hsien Le,Kaihua Zhang,Zi‐Zheng Sun,Yung‐Ning Huang,Yu‐Chieh Weng,Wei‐Ting Chen,Yiwei Fu,Jun‐Bo Qian,Bin Hu,Hong Xu,Cheng‐Tang Chiu,Qinwei Xu,Wei Gong
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (3): 544-551
标识
DOI:10.1111/jgh.16429
摘要

Abstract Background and Aim Chromoendoscopy with the use of indigo carmine (IC) dye is a crucial endoscopic technique to identify gastrointestinal neoplasms. However, its performance is limited by the endoscopist's skill, and no standards are available for lesion identification. Thus, we developed an artificial intelligence (AI) model to replace chromoendoscopy. Methods This pilot study assessed the feasibility of our novel AI model in the conversion of white‐light images (WLI) into virtual IC‐dyed images based on a generative adversarial network. The predictions of our AI model were evaluated against the assessments of five endoscopic experts who were blinded to the purpose of this study with a staining quality rating from 1 ( unacceptable ) to 4 ( excellent ). Results The AI model successfully transformed the WLI of polyps with different morphologies and different types of lesions in the gastrointestinal tract into virtual IC‐dyed images. The quality ratings of the real IC‐dyed and AI images did not significantly differ concerning surface structure (AI vs IC: 3.08 vs 3.00), lesion border (3.04 vs 2.98), and overall contrast (3.14 vs 3.02) from 10 sets of images (10 AI images and 10 real IC‐dyed images). Although the score depended significantly on the evaluator, the staining methods (AI or real IC) and evaluators had no significant interaction ( P > 0.05) with each other. Conclusion Our results demonstrated the feasibility of employing AI model's virtual IC staining, increasing the possibility of being employed in daily practice. This novel technology may facilitate gastrointestinal lesion identification in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助木木栊采纳,获得10
1秒前
隐形曼青应助tanghong采纳,获得10
1秒前
Orange应助Snoopy采纳,获得10
3秒前
4秒前
4秒前
4秒前
Jasper应助yy采纳,获得10
5秒前
5秒前
科研通AI5应助zhouzhou采纳,获得20
7秒前
菜狗发布了新的文献求助20
7秒前
彭于彦祖应助Litoivda采纳,获得10
8秒前
8秒前
麻辣牛肉发布了新的文献求助10
9秒前
彭于彦祖应助Wangle采纳,获得10
9秒前
10秒前
Bebeans应助天真小甜瓜采纳,获得20
10秒前
渺茫的星辰完成签到,获得积分10
10秒前
酷波er应助招财小茗采纳,获得10
11秒前
11秒前
D33sama完成签到,获得积分10
12秒前
在水一方应助麻辣牛肉采纳,获得10
14秒前
隐形曼青应助乐乐采纳,获得10
14秒前
tanghong发布了新的文献求助10
14秒前
66完成签到,获得积分10
15秒前
15秒前
虹虹完成签到 ,获得积分10
16秒前
欣喜靖完成签到 ,获得积分10
18秒前
19秒前
ZXT完成签到 ,获得积分10
20秒前
草草发布了新的文献求助10
21秒前
Snoopy完成签到,获得积分10
23秒前
奋进号完成签到 ,获得积分10
23秒前
jiang完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
木木栊发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3689171
求助须知:如何正确求助?哪些是违规求助? 3238743
关于积分的说明 9836669
捐赠科研通 2950789
什么是DOI,文献DOI怎么找? 1618152
邀请新用户注册赠送积分活动 764852
科研通“疑难数据库(出版商)”最低求助积分说明 738889