异常检测
计算机科学
软件部署
深度学习
推论
人工智能
预处理器
机器学习
云计算
异常(物理)
关系(数据库)
在线学习
实证研究
数据挖掘
数学
软件工程
物理
凝聚态物理
统计
万维网
操作系统
作者
Boxi Yu,Jiayi Yao,Qiuai Fu,Zhiqing Zhong,Hengli Xie,Yucai Wu,Yuchi Ma,Pinjia He
标识
DOI:10.1145/3597503.3623308
摘要
While deep learning (DL) has emerged as a powerful technique, its benefits must be carefully considered in relation to computational costs. Specifically, although DL methods have achieved strong performance in log anomaly detection, they often require extended time for log preprocessing, model training, and model inference, hindering their adoption in online distributed cloud systems that require rapid deployment of log anomaly detection service.
科研通智能强力驱动
Strongly Powered by AbleSci AI