降级(电信)
氮化硼
光催化
化学工程
材料科学
环境化学
化学
纳米技术
催化作用
有机化学
工程类
电信
作者
Bo Wang,Yu Chen,Joshua C. Samba,Kimberly N. Heck,Xiaochuan Huang,Junseok Lee,Jordin Metz,Manav Bhati,John D. Fortner,Qilin Li,Paul Westerhoff,Pedro J. J. Alvarez,Thomas P. Senftle,Michael S. Wong
标识
DOI:10.1016/j.cej.2024.149134
摘要
Boron nitride (BN) photodegrades perfluorooctanoic acid (PFOA) in water under 254-nm light illumination more rapidly than TiO2, which is hypothesized due to its greater surface hydrophobicity. We investigated the role of hydrophobicity on PFOA photocatalysis by comparing BN with anatase TiO2 under reaction conditions, for which the exposed surface areas were the same. BN exhibited ∼ 3.5 × faster PFOA degradation rate compared to TiO2 under acidic pH conditions. PFOA adsorption experiments showed that BN had ∼ 2 × higher PFOA surface coverage, consistent with its higher surface hydrophobicity, as corroborated by contact angle measurements. Both materials were comparatively less photocatalytically active at neutral pH, but BN still exhibited ∼ 2.7 × faster PFOA degradation rate, due to less electrostatic attraction between the PFOA headgroup and the catalyst surface. Langmuir-Hinshelwood rate law analysis suggests BN and TiO2 have comparable photogenerated hole surface concentrations, and density functional theory calculations show that the holes for both photocatalysts can react with surface hydroxyls and with adsorbed PFOA. However, BN has comparatively less surface hydroxyl groups and more adsorbed PFOA, which favors hole reaction with the latter, resulting in a higher PFOA degradation rate. These insights into the role of surface hydrophobicity serve as rationally-guided design principles for improved heterogeneous photocatalysis of persistent surfactants, including the broad suite of per- or poly-fluoroalkyl substances.
科研通智能强力驱动
Strongly Powered by AbleSci AI