Deep Face Decoder: Towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates

计算机科学 面子(社会学概念) 嵌入 人工智能 卷积神经网络 模板 计算机视觉 空格(标点符号) 深度学习 模式识别(心理学) 社会科学 操作系统 社会学 程序设计语言
作者
Janez Križaj,Richard Plesh,Mahesh K. Banavar,Stephanie Schuckers,Vitomir Štruc
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107941-107941
标识
DOI:10.1016/j.engappai.2024.107941
摘要

Advances in deep learning and convolutional neural networks (ConvNets) have driven remarkable face recognition (FR) progress recently. However, the black-box nature of modern ConvNet-based face recognition models makes it challenging to interpret their decision-making process, to understand the reasoning behind specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore, critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into their behavior. To address this challenge, we present in this paper a novel template-inversion approach capable of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations) produced by modern FR techniques. Our approach is based on a novel Deep Face Decoder (DFD) trained in a regression setting to visualize the information encoded in the embedding space with the goal of fostering explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and Celebrity Faces Attributes Dataset High Quality (CelebA-HQ). Our analysis focuses on the embedding spaces of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model (VGG-16) and the 50-layer Residual Network (ResNet-50). The results reveal how information is encoded in the two considered models and how perturbations in image appearance due to rotations, translations, scaling, occlusion, or adversarial attacks, are propagated into the embedding space. Our study offers researchers a deeper comprehension of the underlying mechanisms of ConvNet-based FR models, ultimately promoting advancements in model design and explainability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿哒发布了新的文献求助10
1秒前
shelly完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助糟糕的铁锤采纳,获得10
1秒前
Jenny完成签到,获得积分10
2秒前
wanci应助YYL采纳,获得10
2秒前
小徐同学完成签到,获得积分20
3秒前
3秒前
正直海冬完成签到 ,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
丘比特应助charint采纳,获得10
4秒前
5秒前
bkagyin应助庸俞鳙鱼采纳,获得10
5秒前
田様应助mdalmahadi采纳,获得200
5秒前
6秒前
8秒前
seagull发布了新的文献求助10
8秒前
孤独雪柳发布了新的文献求助10
8秒前
8秒前
9秒前
无限冬卉完成签到,获得积分20
9秒前
9秒前
9秒前
研友_VZG7GZ应助娜娜采纳,获得20
9秒前
人间大清醒完成签到,获得积分10
10秒前
bubble发布了新的文献求助10
10秒前
10秒前
11秒前
寒冷猫咪发布了新的文献求助10
11秒前
12秒前
丶惑完成签到,获得积分10
12秒前
13秒前
hui发布了新的文献求助10
13秒前
酷炫静枫发布了新的文献求助10
13秒前
啦啦啦啦啦啦啦啦6666完成签到,获得积分10
14秒前
天天完成签到 ,获得积分10
14秒前
橙啊程发布了新的文献求助10
14秒前
活力惜寒发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640