Deep Face Decoder: Towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates

计算机科学 面子(社会学概念) 嵌入 人工智能 卷积神经网络 模板 计算机视觉 空格(标点符号) 深度学习 模式识别(心理学) 社会科学 操作系统 社会学 程序设计语言
作者
Janez Križaj,Richard Plesh,Mahesh K. Banavar,Stephanie Schuckers,Vitomir Štruc
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107941-107941
标识
DOI:10.1016/j.engappai.2024.107941
摘要

Advances in deep learning and convolutional neural networks (ConvNets) have driven remarkable face recognition (FR) progress recently. However, the black-box nature of modern ConvNet-based face recognition models makes it challenging to interpret their decision-making process, to understand the reasoning behind specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore, critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into their behavior. To address this challenge, we present in this paper a novel template-inversion approach capable of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations) produced by modern FR techniques. Our approach is based on a novel Deep Face Decoder (DFD) trained in a regression setting to visualize the information encoded in the embedding space with the goal of fostering explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and Celebrity Faces Attributes Dataset High Quality (CelebA-HQ). Our analysis focuses on the embedding spaces of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model (VGG-16) and the 50-layer Residual Network (ResNet-50). The results reveal how information is encoded in the two considered models and how perturbations in image appearance due to rotations, translations, scaling, occlusion, or adversarial attacks, are propagated into the embedding space. Our study offers researchers a deeper comprehension of the underlying mechanisms of ConvNet-based FR models, ultimately promoting advancements in model design and explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
这瓜不卖发布了新的文献求助10
刚刚
Orange应助帅气蓝采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Akim应助寒冷黎云采纳,获得10
1秒前
2秒前
健忘远山完成签到 ,获得积分10
2秒前
hanleiharry1发布了新的文献求助10
3秒前
Channing_Ho完成签到 ,获得积分10
3秒前
eric888应助辛勤的诗蕊采纳,获得50
4秒前
4秒前
顺利毕业完成签到,获得积分10
4秒前
5秒前
科研小白完成签到,获得积分10
5秒前
Ava应助甜蜜花采纳,获得10
5秒前
上官若男应助Raza采纳,获得10
5秒前
6秒前
Ava应助眼睛大行云采纳,获得10
6秒前
7秒前
xue完成签到 ,获得积分10
7秒前
健忘丹珍完成签到,获得积分10
7秒前
7秒前
7秒前
坤坤蹦蹦跳跳完成签到,获得积分10
9秒前
害羞映容完成签到,获得积分10
9秒前
科研通AI6应助小亮哈哈采纳,获得10
9秒前
9秒前
9秒前
所所应助liriyii采纳,获得10
9秒前
核糖体完成签到,获得积分20
10秒前
11秒前
Lloignyth完成签到,获得积分10
11秒前
赵苏程完成签到,获得积分10
11秒前
11秒前
11秒前
乐乐应助小张醒了采纳,获得10
12秒前
半凡完成签到,获得积分10
12秒前
小小666完成签到 ,获得积分10
12秒前
幽悠梦儿发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978