Deep Face Decoder: Towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates

计算机科学 面子(社会学概念) 嵌入 人工智能 卷积神经网络 模板 计算机视觉 空格(标点符号) 深度学习 模式识别(心理学) 社会科学 操作系统 社会学 程序设计语言
作者
Janez Križaj,Richard Plesh,Mahesh K. Banavar,Stephanie Schuckers,Vitomir Štruc
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107941-107941
标识
DOI:10.1016/j.engappai.2024.107941
摘要

Advances in deep learning and convolutional neural networks (ConvNets) have driven remarkable face recognition (FR) progress recently. However, the black-box nature of modern ConvNet-based face recognition models makes it challenging to interpret their decision-making process, to understand the reasoning behind specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore, critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into their behavior. To address this challenge, we present in this paper a novel template-inversion approach capable of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations) produced by modern FR techniques. Our approach is based on a novel Deep Face Decoder (DFD) trained in a regression setting to visualize the information encoded in the embedding space with the goal of fostering explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and Celebrity Faces Attributes Dataset High Quality (CelebA-HQ). Our analysis focuses on the embedding spaces of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model (VGG-16) and the 50-layer Residual Network (ResNet-50). The results reveal how information is encoded in the two considered models and how perturbations in image appearance due to rotations, translations, scaling, occlusion, or adversarial attacks, are propagated into the embedding space. Our study offers researchers a deeper comprehension of the underlying mechanisms of ConvNet-based FR models, ultimately promoting advancements in model design and explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彳亍1117应助友好冰旋采纳,获得20
刚刚
刚刚
kk发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
任性的友桃完成签到,获得积分10
5秒前
Cain发布了新的文献求助10
6秒前
helly发布了新的文献求助10
6秒前
完美世界应助淡然紫寒采纳,获得10
6秒前
7秒前
10秒前
11秒前
Sun发布了新的文献求助10
11秒前
llalluan发布了新的文献求助10
13秒前
16秒前
16秒前
羊羊发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
chen应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
chen应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
劲秉应助科研通管家采纳,获得30
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
卷卷516发布了新的文献求助10
21秒前
chen应助科研通管家采纳,获得10
21秒前
chen应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助科研通管家采纳,获得30
21秒前
21秒前
chenshi0515完成签到 ,获得积分10
23秒前
岁岁发布了新的文献求助30
24秒前
24秒前
25秒前
流星噬月发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519