Deep Face Decoder: Towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates

计算机科学 面子(社会学概念) 嵌入 人工智能 卷积神经网络 模板 计算机视觉 空格(标点符号) 深度学习 模式识别(心理学) 社会科学 操作系统 社会学 程序设计语言
作者
Janez Križaj,Richard Plesh,Mahesh K. Banavar,Stephanie Schuckers,Vitomir Štruc
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107941-107941
标识
DOI:10.1016/j.engappai.2024.107941
摘要

Advances in deep learning and convolutional neural networks (ConvNets) have driven remarkable face recognition (FR) progress recently. However, the black-box nature of modern ConvNet-based face recognition models makes it challenging to interpret their decision-making process, to understand the reasoning behind specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore, critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into their behavior. To address this challenge, we present in this paper a novel template-inversion approach capable of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations) produced by modern FR techniques. Our approach is based on a novel Deep Face Decoder (DFD) trained in a regression setting to visualize the information encoded in the embedding space with the goal of fostering explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and Celebrity Faces Attributes Dataset High Quality (CelebA-HQ). Our analysis focuses on the embedding spaces of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model (VGG-16) and the 50-layer Residual Network (ResNet-50). The results reveal how information is encoded in the two considered models and how perturbations in image appearance due to rotations, translations, scaling, occlusion, or adversarial attacks, are propagated into the embedding space. Our study offers researchers a deeper comprehension of the underlying mechanisms of ConvNet-based FR models, ultimately promoting advancements in model design and explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马金利完成签到,获得积分10
1秒前
神山识完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
yier完成签到,获得积分10
2秒前
3秒前
Ava应助阿飞采纳,获得10
3秒前
万能图书馆应助研友_Zr5Dpn采纳,获得10
3秒前
的方法与地狱技术大会结束完成签到,获得积分10
3秒前
ZZDXXX发布了新的文献求助10
3秒前
伶俐绿柏发布了新的文献求助10
4秒前
科研小笨猪完成签到,获得积分10
4秒前
4秒前
lemon完成签到,获得积分10
4秒前
行止发布了新的文献求助10
4秒前
4秒前
5秒前
FIN应助ling采纳,获得10
5秒前
钟垠州应助ling采纳,获得10
5秒前
ding应助ling采纳,获得10
5秒前
慕青应助小羊驼采纳,获得10
5秒前
7秒前
zhaoshao完成签到,获得积分10
7秒前
7秒前
甜甜的莞完成签到,获得积分20
7秒前
7秒前
俏皮的悟空完成签到,获得积分10
7秒前
赘婿应助乔治采纳,获得10
9秒前
9秒前
ddddddd发布了新的文献求助10
10秒前
淡然绝山发布了新的文献求助10
10秒前
伟@发布了新的文献求助10
10秒前
自信的黑猫完成签到,获得积分10
10秒前
哈哈完成签到,获得积分10
10秒前
哈ha发布了新的文献求助10
10秒前
神勇从波完成签到 ,获得积分10
10秒前
甜甜的莞发布了新的文献求助30
11秒前
11秒前
Miki完成签到,获得积分10
11秒前
ZSXL发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530