Residual-based attention in physics-informed neural networks

残余物 人工神经网络 人工智能 计算机科学 统计物理学 材料科学 物理 算法
作者
Sokratis Anagnostopoulos,Juan Diego Toscano,Nikolaos Stergiopulos,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:421: 116805-116805 被引量:27
标识
DOI:10.1016/j.cma.2024.116805
摘要

Driven by the need for more efficient and seamless integration of physical models and data, physics-informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains a challenge. In this work, we propose an efficient, gradient-less weighting scheme for PINNs that accelerates the convergence of dynamic or static systems. This simple yet effective attention mechanism is a bounded function of the evolving cumulative residuals and aims to make the optimizer aware of problematic regions at no extra computational cost or adversarial learning. We illustrate that this general method consistently achieves one order of magnitude faster convergence than vanilla PINNs and a minimum relative L2 error of O(10−5), on typical benchmarks of the literature. The method is further tested on the inverse solution of the Navier–Stokes within the brain perivascular spaces, where it considerably improves the prediction accuracy. Furthermore, an ablation study is performed for each case to identify the contribution of the components that enhance the vanilla PINN formulation. Evident from the convergence trajectories is the ability of the optimizer to effectively escape from poor local minima or saddle points while focusing on the challenging domain regions, which consistently have a high residual score. We believe that alongside exact boundary conditions and other model reparameterizations, this type of attention mask could be an essential element for fast training of both PINNs and neural operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔qiqiqiqi完成签到,获得积分10
刚刚
1秒前
共享精神应助CMM采纳,获得10
1秒前
小二郎应助Antigen采纳,获得10
1秒前
1秒前
SciGPT应助风中如松采纳,获得10
2秒前
2秒前
laoxiaozi发布了新的文献求助10
2秒前
3秒前
3秒前
火星的雪发布了新的文献求助10
3秒前
hunzizzzzz完成签到,获得积分10
3秒前
哈哈哈哈完成签到 ,获得积分20
3秒前
帅气凝云完成签到 ,获得积分10
3秒前
tony发布了新的文献求助10
4秒前
古的古的应助qiushui采纳,获得10
4秒前
6秒前
玲玲发布了新的文献求助10
6秒前
6秒前
WJTng完成签到,获得积分10
7秒前
研友_VZG7GZ应助王怡霖采纳,获得10
7秒前
彳亍发布了新的文献求助10
7秒前
7秒前
传奇3应助spy采纳,获得10
7秒前
8秒前
胜天半子完成签到,获得积分10
8秒前
9秒前
9秒前
谨慎初曼完成签到,获得积分10
9秒前
葉芊羽发布了新的文献求助10
10秒前
10秒前
852应助laoxiaozi采纳,获得10
10秒前
樱桃猴子发布了新的文献求助10
11秒前
11秒前
11秒前
Antigen完成签到,获得积分10
11秒前
吉吉完成签到 ,获得积分10
11秒前
赘婿应助jhinjhin采纳,获得10
11秒前
搜集达人应助Wy采纳,获得10
11秒前
kingwill应助学习采纳,获得20
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938