Residual-based attention in physics-informed neural networks

残余物 人工神经网络 人工智能 计算机科学 统计物理学 材料科学 物理 算法
作者
Sokratis Anagnostopoulos,Juan Diego Toscano,Nikolaos Stergiopulos,George Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:421: 116805-116805 被引量:5
标识
DOI:10.1016/j.cma.2024.116805
摘要

Driven by the need for more efficient and seamless integration of physical models and data, physics-informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains a challenge. In this work, we propose an efficient, gradient-less weighting scheme for PINNs that accelerates the convergence of dynamic or static systems. This simple yet effective attention mechanism is a bounded function of the evolving cumulative residuals and aims to make the optimizer aware of problematic regions at no extra computational cost or adversarial learning. We illustrate that this general method consistently achieves one order of magnitude faster convergence than vanilla PINNs and a minimum relative L2 error of O(10−5), on typical benchmarks of the literature. The method is further tested on the inverse solution of the Navier–Stokes within the brain perivascular spaces, where it considerably improves the prediction accuracy. Furthermore, an ablation study is performed for each case to identify the contribution of the components that enhance the vanilla PINN formulation. Evident from the convergence trajectories is the ability of the optimizer to effectively escape from poor local minima or saddle points while focusing on the challenging domain regions, which consistently have a high residual score. We believe that alongside exact boundary conditions and other model reparameterizations, this type of attention mask could be an essential element for fast training of both PINNs and neural operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abdurrahman完成签到,获得积分10
刚刚
11128完成签到 ,获得积分10
1秒前
彭于晏应助王金金采纳,获得10
1秒前
ryt完成签到,获得积分20
1秒前
1秒前
烟花应助白元正采纳,获得10
3秒前
zhangjw完成签到 ,获得积分10
4秒前
4秒前
乐观寻绿完成签到,获得积分10
6秒前
PEX发布了新的文献求助10
7秒前
夏昼苦长完成签到,获得积分10
7秒前
开心potato完成签到 ,获得积分20
8秒前
zqj完成签到,获得积分10
11秒前
xw完成签到,获得积分10
11秒前
夏昼苦长发布了新的文献求助10
11秒前
12秒前
时尚语梦完成签到 ,获得积分10
13秒前
13秒前
光亮小笼包完成签到 ,获得积分10
14秒前
橙橙完成签到,获得积分10
14秒前
丰盛的煎饼应助zqj采纳,获得10
17秒前
娜是一阵风完成签到 ,获得积分10
17秒前
17秒前
linzy完成签到,获得积分10
17秒前
轻轻完成签到 ,获得积分10
18秒前
可爱的函函应助Only采纳,获得10
18秒前
家向松完成签到,获得积分10
18秒前
烷基八氮完成签到,获得积分10
18秒前
风趣访卉完成签到,获得积分10
18秒前
曾经的听云完成签到 ,获得积分10
19秒前
123完成签到,获得积分10
19秒前
行萱完成签到 ,获得积分10
20秒前
劳资懒得起网名完成签到,获得积分10
21秒前
zpp完成签到 ,获得积分10
23秒前
笑、完成签到,获得积分10
23秒前
科小白完成签到 ,获得积分10
24秒前
Mannone完成签到 ,获得积分10
24秒前
机智的皮皮虾完成签到,获得积分10
24秒前
矮小的茹妖完成签到 ,获得积分10
25秒前
zhaoman完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056768
求助须知:如何正确求助?哪些是违规求助? 2713310
关于积分的说明 7435391
捐赠科研通 2358319
什么是DOI,文献DOI怎么找? 1249367
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596259