Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring

材料科学 纤维素 导电体 复合材料 拉伤 高分子科学 纳米技术 化学工程 医学 内科学 工程类
作者
Qing-Yue Ni,Xiao-Feng He,Zhou Jialin,Yu‐Qin Yang,Zi‐Fan Zeng,Peng-Fei Mao,Yu-Hang Luo,Jin-Meng Xu,Baiyu Jiang,Qiang Wu,Ben Wang,Yu‐Qing Qin,Li‐Xiu Gong,Long‐Cheng Tang,Shi‐Neng Li
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:191: 181-191 被引量:34
标识
DOI:10.1016/j.jmst.2023.12.048
摘要

For advanced conductive hydrogels, adaptable mechanical properties and high conductivity are essential requirements for practical application, e.g., soft electronic devices. Here, a straightforward strategy to develop a mechanically robust hydrogel with high conductivity by constructing complicated 3D structures composed of covalently cross-linked polymer network and two nanofillers with distinguishing dimensions is reported. The combination of one-dimensional quaternized cellulose nanofibrils (QACNF) and two-dimensional MXene nanosheets not only provides prominent and tunable mechanical properties modulated by materials composition, but results in electronically conductive path with high conductivity (1281 mS m–1). Owing to the uniform interconnectivity of network structure attributed to the strong macromolecular interaction and nano-reinforced effect, the resultant hydrogel exhibits a balanced mechanical feature, i.e., high tensile strength (449 kPa), remarkable stretchability (˃ 1700%), and ultra-high toughness (5.46 MJ m–3), outperforming those of virgin one. Additionally, the enhanced conductive characteristic with the aid of QACNF enables hydrogels with impressive electromechanical behavior, containing high sensitivity (maximum gauge factor: 2.24), wide working range (0–1465%), and fast response performance (response time: 141 ms, recover time: 140 ms). Benefiting from the excellent mechanical performance, a flexible strain sensor based on such conductive hydrogel can deliver an appealing sensing performance of monitoring multi-scale deformations, from large and monotonous mechanical deformation to tiny and complex physiological motions (e.g., joint movement and signature/vocal recognition). Together, the hydrogel material in this work opens up opportunities in the design and fabrication of advanced gel-based materials for emerging wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后广山发布了新的文献求助10
1秒前
123发布了新的文献求助30
1秒前
Yan完成签到,获得积分10
2秒前
迪迦发布了新的文献求助10
3秒前
3秒前
orixero应助种花家的狗狗采纳,获得10
4秒前
yiqichihuoguoa完成签到 ,获得积分10
4秒前
fhehe完成签到,获得积分20
5秒前
5秒前
盐坚果完成签到,获得积分10
5秒前
6秒前
6秒前
zhu96114748完成签到,获得积分10
6秒前
7秒前
星辰大海应助叮叮爱吃糖采纳,获得10
8秒前
8秒前
8秒前
盐坚果发布了新的文献求助10
9秒前
ivy0425发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
bingbing完成签到,获得积分10
11秒前
11秒前
是小雨呀完成签到,获得积分10
11秒前
12秒前
ELend完成签到,获得积分10
12秒前
13秒前
迷路荷花发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
14秒前
14秒前
14秒前
jerry发布了新的文献求助10
14秒前
ccm应助科研通管家采纳,获得30
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
ds发布了新的文献求助10
15秒前
wwz应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866