Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring

材料科学 纤维素 导电体 复合材料 拉伤 高分子科学 纳米技术 化学工程 医学 内科学 工程类
作者
Qing-Yue Ni,Xiao-Feng He,Zhou Jialin,Yu‐Qin Yang,Zi‐Fan Zeng,P.-S. Mao,Yu-Hang Luo,XU Jian-qiu,Baiyu Jiang,Qiang Wu,Ben Wang,Yu‐Qing Qin,Li‐Xiu Gong,Long‐Cheng Tang,Shi‐Neng Li
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:191: 181-191 被引量:20
标识
DOI:10.1016/j.jmst.2023.12.048
摘要

For advanced conductive hydrogels, adaptable mechanical properties and high conductivity are essential requirements for practical application, e.g., soft electronic devices. Here, a straightforward strategy to develop a mechanically robust hydrogel with high conductivity by constructing complicated 3D structures composed of covalently cross-linked polymer network and two nanofillers with distinguishing dimensions is reported. The combination of one-dimensional quaternized cellulose nanofibrils (QACNF) and two-dimensional MXene nanosheets not only provides prominent and tunable mechanical properties modulated by materials composition, but results in electronically conductive path with high conductivity (1281 mS m–1). Owing to the uniform interconnectivity of network structure attributed to the strong macromolecular interaction and nano-reinforced effect, the resultant hydrogel exhibits a balanced mechanical feature, i.e., high tensile strength (449 kPa), remarkable stretchability (˃ 1700%), and ultra-high toughness (5.46 MJ m–3), outperforming those of virgin one. Additionally, the enhanced conductive characteristic with the aid of QACNF enables hydrogels with impressive electromechanical behavior, containing high sensitivity (maximum gauge factor: 2.24), wide working range (0–1465%), and fast response performance (response time: 141 ms, recover time: 140 ms). Benefiting from the excellent mechanical performance, a flexible strain sensor based on such conductive hydrogel can deliver an appealing sensing performance of monitoring multi-scale deformations, from large and monotonous mechanical deformation to tiny and complex physiological motions (e.g., joint movement and signature/vocal recognition). Together, the hydrogel material in this work opens up opportunities in the design and fabrication of advanced gel-based materials for emerging wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lavender发布了新的文献求助20
1秒前
漂亮翠曼发布了新的文献求助10
2秒前
ming发布了新的文献求助10
2秒前
舒心的新竹完成签到,获得积分10
3秒前
钮祜禄则天完成签到,获得积分10
6秒前
西南楚留香完成签到,获得积分10
7秒前
小羊爱吃草完成签到,获得积分10
9秒前
9秒前
可爱的函函应助qing采纳,获得10
9秒前
10秒前
11秒前
禹丹烟发布了新的文献求助30
13秒前
jason完成签到,获得积分10
14秒前
九日九日完成签到,获得积分10
14秒前
思源应助二十八画生采纳,获得10
14秒前
kaka091发布了新的文献求助30
15秒前
shanshan123458完成签到 ,获得积分10
15秒前
womodou发布了新的文献求助10
16秒前
Mystic发布了新的文献求助10
17秒前
19秒前
悦耳伊发布了新的文献求助10
20秒前
一一应助123采纳,获得10
21秒前
24秒前
24秒前
恐龙先生完成签到,获得积分10
26秒前
HBW完成签到,获得积分20
27秒前
务实的丝袜完成签到,获得积分20
28秒前
ming完成签到,获得积分10
28秒前
womodou完成签到,获得积分10
28秒前
29秒前
30秒前
32秒前
浮生发布了新的文献求助10
32秒前
quan完成签到,获得积分10
34秒前
34秒前
干净的晋鹏完成签到,获得积分10
36秒前
阿良发布了新的文献求助10
37秒前
38秒前
40秒前
tramp应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 2001
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Black to Nature 1000
Decision Theory 1000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2992813
求助须知:如何正确求助?哪些是违规求助? 2653117
关于积分的说明 7175388
捐赠科研通 2288482
什么是DOI,文献DOI怎么找? 1212985
版权声明 592615
科研通“疑难数据库(出版商)”最低求助积分说明 592130