MGIML: Cancer Grading With Incomplete Radiology-Pathology Data via Memory Learning and Gradient Homogenization

分级(工程) 均质化(气候) 放射科 计算机科学 病理 人工智能 医学 医学物理学 生物 生物多样性 生态学
作者
Pengyu Wang,Huaqi Zhang,Meilu Zhu,Xi Jiang,Jing Qin,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2113-2124 被引量:2
标识
DOI:10.1109/tmi.2024.3355142
摘要

Taking advantage of multi-modal radiology-pathology data with complementary clinical information for cancer grading is helpful for doctors to improve diagnosis efficiency and accuracy. However, radiology and pathology data have distinct acquisition difficulties and costs, which leads to incomplete-modality data being common in applications. In this work, we propose a Memory-and Gradient-guided Incomplete Modal-modal Learning (MGIML) framework for cancer grading with incomplete radiology-pathology data. Firstly, to remedy missing-modality information, we propose a Memory-driven Hetero-modality Complement (MH-Complete) scheme, which constructs modal-specific memory banks constrained by a coarse-grained memory boosting (CMB) loss to record generic radiology and pathology feature patterns, and develops a cross-modal memory reading strategy enhanced by a fine-grained memory consistency (FMC) loss to take missing-modality information from well-stored memories. Secondly, as gradient conflicts exist between missing-modality situations, we propose a Rotation-driven Gradient Homogenization (RG-Homogenize) scheme, which estimates instance-specific rotation matrices to smoothly change the feature-level gradient directions, and computes confidence-guided homogenization weights to dynamically balance gradient magnitudes. By simultaneously mitigating gradient direction and magnitude conflicts, this scheme well avoids the negative transfer and optimization imbalance problems. Extensive experiments on CPTAC-UCEC and CPTAC-PDA datasets show that the proposed MGIML framework performs favorably against state-of-the-art multi-modal methods on missing-modality situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
虚度30年发布了新的文献求助10
1秒前
2秒前
LeimingDai发布了新的文献求助10
2秒前
3秒前
3秒前
奋斗的不言完成签到,获得积分10
5秒前
andrele发布了新的文献求助20
5秒前
ding应助小李博士采纳,获得10
5秒前
Sil_0321发布了新的文献求助10
6秒前
眼睛大安荷完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
心有猛虎发布了新的文献求助10
9秒前
9秒前
10秒前
清脆水卉完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
葡萄嘎嘣发布了新的文献求助10
13秒前
yyy完成签到,获得积分10
14秒前
14秒前
lh发布了新的文献求助30
14秒前
今后应助雨的痕迹采纳,获得10
14秒前
皓月星辰发布了新的文献求助10
15秒前
不是当地发布了新的文献求助10
16秒前
陳某发布了新的文献求助10
16秒前
菠萝李完成签到,获得积分10
16秒前
16秒前
拉布拉卡发布了新的文献求助10
17秒前
liunan完成签到 ,获得积分10
17秒前
Leo发布了新的文献求助30
19秒前
姽婳wy发布了新的文献求助10
20秒前
PU聚氨酯发布了新的文献求助30
22秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571