MGIML: Cancer Grading With Incomplete Radiology-Pathology Data via Memory Learning and Gradient Homogenization

分级(工程) 均质化(气候) 放射科 计算机科学 病理 人工智能 医学 医学物理学 生物 生物多样性 生态学
作者
Pengyu Wang,Huaqi Zhang,Meilu Zhu,Xi Jiang,Jing Qin,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2113-2124
标识
DOI:10.1109/tmi.2024.3355142
摘要

Taking advantage of multi-modal radiology-pathology data with complementary clinical information for cancer grading is helpful for doctors to improve diagnosis efficiency and accuracy. However, radiology and pathology data have distinct acquisition difficulties and costs, which leads to incomplete-modality data being common in applications. In this work, we propose a Memory-and Gradient-guided Incomplete Modal-modal Learning (MGIML) framework for cancer grading with incomplete radiology-pathology data. Firstly, to remedy missing-modality information, we propose a Memory-driven Hetero-modality Complement (MH-Complete) scheme, which constructs modal-specific memory banks constrained by a coarse-grained memory boosting (CMB) loss to record generic radiology and pathology feature patterns, and develops a cross-modal memory reading strategy enhanced by a fine-grained memory consistency (FMC) loss to take missing-modality information from well-stored memories. Secondly, as gradient conflicts exist between missing-modality situations, we propose a Rotation-driven Gradient Homogenization (RG-Homogenize) scheme, which estimates instance-specific rotation matrices to smoothly change the feature-level gradient directions, and computes confidence-guided homogenization weights to dynamically balance gradient magnitudes. By simultaneously mitigating gradient direction and magnitude conflicts, this scheme well avoids the negative transfer and optimization imbalance problems. Extensive experiments on CPTAC-UCEC and CPTAC-PDA datasets show that the proposed MGIML framework performs favorably against state-of-the-art multi-modal methods on missing-modality situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路海蓝应助粽子采纳,获得10
刚刚
刚刚
刚刚
小蘑菇应助科目三三次郎采纳,获得10
1秒前
1秒前
科研通AI2S应助佐zzz采纳,获得10
1秒前
cc发布了新的文献求助10
1秒前
充电宝应助顺顺利利毕业采纳,获得10
1秒前
徐徐徐应助落后三颜采纳,获得10
2秒前
鱼叔发布了新的文献求助10
2秒前
小兰应助无心的文龙采纳,获得10
3秒前
3秒前
施奇赞发布了新的文献求助10
4秒前
聿小弟发布了新的文献求助10
5秒前
5秒前
高大怀梦发布了新的文献求助30
5秒前
小蘑菇应助清爽的洋葱采纳,获得10
6秒前
6秒前
SylviaHui关注了科研通微信公众号
7秒前
7秒前
8秒前
Dore发布了新的文献求助10
8秒前
9秒前
风驻云停完成签到,获得积分10
10秒前
852应助aaaaaa采纳,获得10
10秒前
10秒前
鱼叔完成签到,获得积分10
10秒前
gfgcf完成签到,获得积分20
11秒前
差生文具多完成签到 ,获得积分10
11秒前
11秒前
施奇赞完成签到,获得积分10
11秒前
11秒前
咋还完成签到,获得积分10
13秒前
秋光发布了新的文献求助10
14秒前
小何发布了新的文献求助10
14秒前
15秒前
15秒前
LHL发布了新的文献求助10
16秒前
ZP完成签到,获得积分10
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432