Spatial memory-augmented visual navigation based on hierarchical deep reinforcement learning in unknown environments

计算机科学 人工智能 空间学习 强化学习 空间记忆 认知心理学 人机交互 心理学 神经科学 认知 工作记忆
作者
Sheng Jin,X. Wang,Qing‐Hao Meng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111358-111358 被引量:29
标识
DOI:10.1016/j.knosys.2023.111358
摘要

Visual navigation in unknown environments poses significant challenges due to the presence of many obstacles and low-texture scenes. These factors may cause frequent collisions and tracking failure of feature-based visual Simultaneous Localization and Mapping (vSLAM). To avoid these issues, this paper proposes a spatial memory-augmented visual navigation system that combines a vSLAM module, a conventional global planner module, and a Hierarchical Reinforcement Learning (HRL)-based local planner module. Firstly, a real-time vSLAM named Salient-SLAM is proposed to augment the performance of visual navigation. Salient-SLAM creates a navigation mapping thread by combining a saliency prediction model to build a navigation map that categorizes environmental regions as occupied, explored, or noticeable. Spatial memory that contains spatial abstraction and saliency information of the environment can be further formed by encoding navigation maps, which helps the agent determine an optimal path towards its destination. An open-sourced saliency dataset is proposed to train the saliency prediction model by mimicking the visual attention mechanism. Secondly, a HRL method is proposed to automatically decompose local planning into a high-level policy selector and several low-level policies, where the latter produces actions to interact with the environment. We maximize entropy and minimize option correlation in learning low-level policies, aiming at acquiring diverse and independent behaviors. The simulation results show that the proposed HRL method outperforms competitive baselines by 6.29-10.85% on Success Rate (SR) and 3.87-11.1% on Success weighted by Path Length (SPL) metrics. By incorporating the spatial memory, SR, and SPL metrics can be augmented by an average of 9.85% and 10.89%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Angelica1021完成签到 ,获得积分10
1秒前
zzyt发布了新的文献求助10
2秒前
2秒前
zhihaiyu完成签到 ,获得积分10
2秒前
lyric发布了新的文献求助10
2秒前
飞云之下发布了新的文献求助10
3秒前
星空完成签到 ,获得积分10
3秒前
3秒前
279完成签到,获得积分10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
小阳完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
jiangshanshan发布了新的文献求助10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
5秒前
池羽完成签到,获得积分10
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027