Spatial Transcriptomics Unveils Novel Potential Mechanisms of Disease in a MI cγ1 Multiple Myeloma in vivo Model

转录组 体内 生物 多发性骨髓瘤 细胞 计算生物学 癌症研究 基因表达 基因 遗传学 免疫学
作者
Laura Sudupe,Emma Muiños‐López,Isabel A. Calvo,Ana López-Pérez,Amaia Vilas–Zornoza,Sarai Sarvide,Purificación Ripalda‐Cemboráin,Azari Bantan,Jin Ye,Vincenzo Lagani,Paula Aguirre-Ruiz,Patxi San-Martin,Itziar Cenzano,Marta Larráyoz,Laura Álvarez-Gigli,Marta Abengozar-Muela,Borja Saez-Ochoa,Phillip T Newton,Jesper Tegnér,Bruno Paiva,José A. Martínez-Climent,David Green,Felipe Prósper
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 4076-4076
标识
DOI:10.1182/blood-2023-181643
摘要

Multiple Myeloma (MM) is a malignant plasma cell (PC) disorder characterized by a heterogeneous distribution of PCs in the bone marrow (BM) where the interactions between the PCs and the BM microenvironment guide the pathogenesis of the disease. The development of single cell technologies has contributed to understand the transcriptional heterogeneity of the disease both from the tumor and the microenvironment point of view, yet the spatial organization of cellular states and niche-specific regulatory programs remain to be investigated. To address the role of spatially resolved interactions in MM, we performed spatial transcriptomic analysis in BM from the MI cγ1mice strain (Larrayoz et al Nat Med. 2023) a recently described mouse model that recapitulates the characteristics of a MYC driven human MM disease using the Visium Spatial Gene Expression analysis (10x Genomics). Using formalin-fixed paraffin-embedded (FFPE) BM tissues from the femur of control mice, we first characterized the healthy BM. Considering that each spot contains an averaged transcriptomic profile of 3-10 cells, we generated a single-cell reference set that included the most prevalent cell types in the BM to identify the cell type contribution per spot. The relative proportions of the estimations are consistent with percentage estimations observed by previous works (Hongzhe et al, eLife. 2023). Next, using the “cell proportion estimations per spot” we identified four different clusters of spots. A deeper characterization of those clusters revealed a positive correlation between erythroblasts and B cells, and a negative correlation between both cell types and neutrophils. Additionally, we spatially defined clusters 1 and 2, those with larger proportion of erythroblasts, in the metaphysis trabecular regions of the bone marrow. We followed the same analysis framework to characterize the spatial configuration in the MI cγ1 mice BM with a developed MM. To this end, we incorporated the MM-derived single-cell PCs in the single-cell reference set. Importantly, the pathological PCs were identified and organized in large groups in the BM space. Cell proportion estimations in these samples revealed a distribution in 7 clusters, 4 of them concentrated in the periphery of the PC hot spots and 3 mirroring the PC gradient observed in previous analysis (Figure 1A). We next performed a targeted differential analysis to confirm previous observed markers identities of different MM processes as Cd44 (de Jong et al, Nat Immunol. 2021), a signature of dormant cells (Khoo et al, Blood. 2019), the 38 MM-associated surface-protein-encoding genes (Yao et al, Cancer Res. 2023), Mmp9 and different profiles of T cell exhaustion markers within the 3 clusters with higher PC concentration. These analyses allowed us to verify two different markers, Cd44 and Mmp9 localized in the periphery of the hot spots of PC which may explain an invasive mechanism of the cells localized in the outer areas of the MM combining an inflammatory environment, manifested by a Cd44 increment, with a degradative mechanism driven by Mmp9. Simultaneously, an untargeted differential analysis aimed to identify markers characterizing the clusters with high PC prevalence, revealed novel marker genes never described before in MM and not associated with PC proportion, as the Transmembrane Immune Signaling Adaptor ( Tyrobp) in the cluster 5 (peripheral cluster), which is predictive of a poor prognosis and high tumor immune infiltration in other described tumors (Lu et al BMC Cancer 2021) (Fig 1B). Finally, as a proof of principle of this technology potential in human samples, spatial transcriptomic was applied to FFPE samples from BM biopsies of 7 MM patients with different degrees of PC infiltration, providing a source for validation of the results obtained in the mouse model. In conclusion, our findings demonstrate that the application of spatial transcriptomics represents a useful tool for understanding the spatial architecture and niche specific interactions in human diseases, offering a systemic approach to dissect the role of the spatial interactions in the pathogenesis of MM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TCB完成签到,获得积分10
刚刚
1秒前
童心未泯发布了新的文献求助10
1秒前
慢慢的地理人完成签到,获得积分10
3秒前
精明元霜应助yzt采纳,获得10
4秒前
清爽泥猴桃完成签到,获得积分10
4秒前
Vito完成签到,获得积分10
4秒前
5秒前
在水一方应助xink采纳,获得10
5秒前
5秒前
打打应助hadern采纳,获得10
6秒前
蛎卡奔发布了新的文献求助10
7秒前
JUST完成签到,获得积分10
7秒前
hjx完成签到,获得积分10
8秒前
彭于晏应助kxmyt采纳,获得10
9秒前
9秒前
Heheya发布了新的文献求助10
10秒前
shain完成签到,获得积分10
11秒前
乐乐应助高大怀梦采纳,获得10
11秒前
柠檬精翠翠完成签到 ,获得积分10
11秒前
冬天回来661完成签到,获得积分10
11秒前
Ariel96完成签到,获得积分20
12秒前
12秒前
omega完成签到 ,获得积分10
12秒前
12秒前
奋斗的剑完成签到 ,获得积分10
13秒前
神乐咩咩子完成签到,获得积分10
13秒前
科研通AI2S应助22鱼采纳,获得30
13秒前
14秒前
爱学习的鼠鼠完成签到,获得积分10
15秒前
单于思雁发布了新的文献求助10
15秒前
美君发布了新的文献求助10
15秒前
16秒前
17秒前
迷人的悒完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
领导范儿应助ssskong采纳,获得10
18秒前
18秒前
薰硝壤应助科研通管家采纳,获得200
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655