多硫化物
异质结
氧化还原
材料科学
催化作用
分离器(采油)
电化学
化学工程
拉曼光谱
阴极
纳米结构
电池(电)
纳米技术
硫黄
电化学动力学
电极
化学
光电子学
物理化学
有机化学
功率(物理)
物理
光学
量子力学
工程类
电解质
冶金
热力学
作者
Jun Pu,Yun Tan,Tao Wang,Wenbin Gong,Cuiping Gu,Pan Xue,Zhenghua Wang,Yagang Yao
出处
期刊:Small
[Wiley]
日期:2023-09-01
卷期号:20 (1)
被引量:6
标识
DOI:10.1002/smll.202304847
摘要
Abstract The “shuttle effect” and slow redox reactions of Li‐S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li‐S battery separator using a 2D Fe 2 O 3 –CoP heterostructure that combines the dual functions of polar Fe 2 O 3 and high‐conductivity CoP. The synthesized ultrathin nanostructure exposes well‐dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe 2 O 3 –CoP‐based separator provides an astonishing capacity of 1346 mAh g −1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm −2 , it shows an area capacity of 5.90 mAh cm −2 . This study provides useful insights into the design of new catalytic materials for Li‐S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI