封堵器
蛋白激酶B
埃文斯蓝
沃特曼宁
PI3K/AKT/mTOR通路
血脑屏障
化学
紧密连接
药理学
细胞生物学
生物
内分泌学
信号转导
中枢神经系统
作者
Hengjun Zhou,Xiaoyi Wang,Liqing Wang,Jiesheng Zheng,Kaiyuan Huang,Jianwei Pan
标识
DOI:10.1016/j.cbi.2023.110807
摘要
This study aimed to treat diabetic cerebral ischemia-reperfusion injury (CI/RI) by affecting blood brain barrier (BBB) permeability and integrity. The CI/RI model in DM mice and a high glucose (HG) treated oxygen and glucose deprivation/reoxygenation (OGD/R) brain endothelial cell model were established for the study. Evans blue (EB) staining was used to evaluate the permeability of BBB in vivo. TTC staining was used to analyze cerebral infarction. The location and expression of tribbles homolog 3 (TRIB3) in endothelial cells were detected by immunofluorescence. Western blotting was used to detect the protein expressions of TRIB3, tight junction molecules, adhesion molecules, phosphorylated protein kinase B (p-AKT) and AKT. The levels of pro-inflammatory cytokines were detected by qRT-PCR. Trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran were used to measure vascular permeability in vitro. TRIB3 ubiquitination and acetylation levels were detected. Acetyltransferase bound to TRIB3 were identified by immunoprecipitation. TRIB3 was localized in cerebral endothelial cells and was highly expressed in diabetic CI/R mice. The BBB permeability in diabetic CI/R mice and HG-treated OGD/R cells was increased, while the junction integrity was decreased. Interference with TRIB3 in vitro reduces BBB permeability and increases junction integrity. In vivo interfering with TRIB3 reduced cerebral infarction volume, BBB permeability and inflammation levels, and upregulated p-AKT levels. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin reversed the effects of TRIB3-interfering plasmid. In vitro HG treatment induced TRIB3 acetylation through acetyltransferase p300, which in turn reduced ubiquitination and stabilized TRIB3. Interfering TRIB3 protects BBB by activating PI3K/AKT pathway and alleviates brain injury, which provides a new target for diabetic CI/RI.
科研通智能强力驱动
Strongly Powered by AbleSci AI