亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer

成熟度 残余物 人工智能 规范化(社会学) 计算机科学 算法 模式识别(心理学) 数据挖掘 人类学 食品科学 社会学 成熟 化学
作者
Shizhong Yang,Wei Wang,Sheng Gao,Zhaopeng Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108360-108360 被引量:122
标识
DOI:10.1016/j.compag.2023.108360
摘要

Identifying the ripeness of strawberries can be challenging due to their complex growth environment, interference from light intensity, and shading caused by strawberry aggregation. To address these issues, this study aims to develop an algorithm for accurately detecting and classifying ripe strawberries. This study proposed a novel LS-YOLOv8s model for detecting and grading the ripeness of strawberries, which is based on the YOLOv8s deep learning algorithm and incorporates the LW-Swin Transformer module. To improve the performance of the model, two new random variables were introduced in the contrast enhancement process to control the enhancement effect. The dataset was expanded from 1089 to 7515 images, which increased the diversity of the data and reduced the risk of over fitting the model. Additionally, the Swin Transformer module was added to the TopDown Layer2 during the feature fusion stage to capture long distance dependencies in the input data and improve the generalization capability of the model with the use of a multi-headed self-attention mechanism. Finally, a more efficient feature fusion network was achieved by introducing a residual network with learnable parameters and scaled normalization into the original residual structure of the Swin Transformer. To evaluate the effectiveness of LS-YOLOv8s for strawberry ripeness detection, we collected a dataset of strawberry images from a strawberry planting base. The dataset was split using the 5-fold cross-validation approach, which improved the model evaluation process. Experimental results showed that LS-YOLOv8s better than other models, with a 1.6 %, 33.5 %, and 3.4 % improvement in mAP0.5 on the validation set compared to YOLOv5s, CenterNet, and SSD, respectively. Moreover, LS-YOLOv8s achieved better detection precision and speed than YOLOv8m with only approximately 51.93 % of the number of parameters used, achieving 94.4 % detection precision and 19.23fps detection speed, improving by 0.5 % and 6.56fps, respectively. The LS-YOLOv8s model can provide reliable theoretical support for detecting strawberry targets, evaluating their ripeness, and automating the strawberry picking process for orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenky发布了新的文献求助10
3秒前
和光同尘发布了新的文献求助10
4秒前
山楂完成签到,获得积分10
7秒前
Gydl完成签到,获得积分10
8秒前
高高元柏完成签到,获得积分20
41秒前
44秒前
哈哈发布了新的文献求助10
46秒前
125mmD91T完成签到,获得积分10
56秒前
负者歌于途完成签到,获得积分10
1分钟前
哈哈我完成签到,获得积分10
1分钟前
1分钟前
wearelulu完成签到,获得积分10
2分钟前
Micheal完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
momo发布了新的文献求助30
2分钟前
2分钟前
何何发布了新的文献求助10
2分钟前
可爱的函函应助何何采纳,获得10
2分钟前
momo完成签到,获得积分10
3分钟前
Lan完成签到 ,获得积分10
3分钟前
Wei发布了新的文献求助10
3分钟前
3分钟前
哈哈发布了新的文献求助10
4分钟前
jinsijia应助科研通管家采纳,获得10
4分钟前
哈哈发布了新的文献求助10
4分钟前
计划完成签到,获得积分10
4分钟前
魔幻诗兰完成签到,获得积分10
4分钟前
NexusExplorer应助科研小贩采纳,获得10
4分钟前
5分钟前
科研小贩发布了新的文献求助10
5分钟前
热情依白应助可爱寻芹采纳,获得10
5分钟前
从来都不会放弃zr完成签到,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
王吉萍完成签到 ,获得积分10
6分钟前
gcr完成签到 ,获得积分10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
Emilia发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681609
求助须知:如何正确求助?哪些是违规求助? 5011314
关于积分的说明 15175896
捐赠科研通 4841184
什么是DOI,文献DOI怎么找? 2594973
邀请新用户注册赠送积分活动 1547960
关于科研通互助平台的介绍 1505990