清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer

成熟度 残余物 人工智能 规范化(社会学) 计算机科学 算法 模式识别(心理学) 数据挖掘 人类学 食品科学 社会学 成熟 化学
作者
Shizhong Yang,Wei Wang,Sheng Gao,Zhaopeng Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108360-108360 被引量:64
标识
DOI:10.1016/j.compag.2023.108360
摘要

Identifying the ripeness of strawberries can be challenging due to their complex growth environment, interference from light intensity, and shading caused by strawberry aggregation. To address these issues, this study aims to develop an algorithm for accurately detecting and classifying ripe strawberries. This study proposed a novel LS-YOLOv8s model for detecting and grading the ripeness of strawberries, which is based on the YOLOv8s deep learning algorithm and incorporates the LW-Swin Transformer module. To improve the performance of the model, two new random variables were introduced in the contrast enhancement process to control the enhancement effect. The dataset was expanded from 1089 to 7515 images, which increased the diversity of the data and reduced the risk of over fitting the model. Additionally, the Swin Transformer module was added to the TopDown Layer2 during the feature fusion stage to capture long distance dependencies in the input data and improve the generalization capability of the model with the use of a multi-headed self-attention mechanism. Finally, a more efficient feature fusion network was achieved by introducing a residual network with learnable parameters and scaled normalization into the original residual structure of the Swin Transformer. To evaluate the effectiveness of LS-YOLOv8s for strawberry ripeness detection, we collected a dataset of strawberry images from a strawberry planting base. The dataset was split using the 5-fold cross-validation approach, which improved the model evaluation process. Experimental results showed that LS-YOLOv8s better than other models, with a 1.6 %, 33.5 %, and 3.4 % improvement in mAP0.5 on the validation set compared to YOLOv5s, CenterNet, and SSD, respectively. Moreover, LS-YOLOv8s achieved better detection precision and speed than YOLOv8m with only approximately 51.93 % of the number of parameters used, achieving 94.4 % detection precision and 19.23fps detection speed, improving by 0.5 % and 6.56fps, respectively. The LS-YOLOv8s model can provide reliable theoretical support for detecting strawberry targets, evaluating their ripeness, and automating the strawberry picking process for orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
annnnnnd完成签到 ,获得积分10
10秒前
29秒前
eternal_dreams完成签到 ,获得积分10
36秒前
花花521完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
肖果完成签到 ,获得积分10
1分钟前
青出于蓝蔡完成签到,获得积分10
2分钟前
英喆完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
arsenal完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
CUN完成签到,获得积分10
4分钟前
naczx完成签到,获得积分0
4分钟前
liwang9301完成签到,获得积分10
4分钟前
yujie完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
fuyuhaoy完成签到,获得积分10
5分钟前
back you up完成签到,获得积分0
5分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
Barid完成签到,获得积分10
6分钟前
长安乱世完成签到 ,获得积分10
7分钟前
ming123ah完成签到,获得积分10
7分钟前
7分钟前
陈月婷完成签到 ,获得积分10
7分钟前
8分钟前
笑面客发布了新的文献求助10
8分钟前
柴yuki完成签到 ,获得积分10
8分钟前
Hello应助坚定的小海豚采纳,获得10
8分钟前
9分钟前
9分钟前
lisa完成签到 ,获得积分10
9分钟前
邓代容完成签到 ,获得积分10
9分钟前
Sunny完成签到,获得积分10
10分钟前
10分钟前
孟寐以求完成签到 ,获得积分10
10分钟前
10分钟前
小黑完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3721185
求助须知:如何正确求助?哪些是违规求助? 3267320
关于积分的说明 9947545
捐赠科研通 2980964
什么是DOI,文献DOI怎么找? 1635275
邀请新用户注册赠送积分活动 776331
科研通“疑难数据库(出版商)”最低求助积分说明 746251