Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer

成熟度 残余物 人工智能 规范化(社会学) 计算机科学 算法 模式识别(心理学) 数据挖掘 人类学 食品科学 社会学 成熟 化学
作者
Shizhong Yang,Wei Wang,Sheng Gao,Zhaopeng Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108360-108360 被引量:39
标识
DOI:10.1016/j.compag.2023.108360
摘要

Identifying the ripeness of strawberries can be challenging due to their complex growth environment, interference from light intensity, and shading caused by strawberry aggregation. To address these issues, this study aims to develop an algorithm for accurately detecting and classifying ripe strawberries. This study proposed a novel LS-YOLOv8s model for detecting and grading the ripeness of strawberries, which is based on the YOLOv8s deep learning algorithm and incorporates the LW-Swin Transformer module. To improve the performance of the model, two new random variables were introduced in the contrast enhancement process to control the enhancement effect. The dataset was expanded from 1089 to 7515 images, which increased the diversity of the data and reduced the risk of over fitting the model. Additionally, the Swin Transformer module was added to the TopDown Layer2 during the feature fusion stage to capture long distance dependencies in the input data and improve the generalization capability of the model with the use of a multi-headed self-attention mechanism. Finally, a more efficient feature fusion network was achieved by introducing a residual network with learnable parameters and scaled normalization into the original residual structure of the Swin Transformer. To evaluate the effectiveness of LS-YOLOv8s for strawberry ripeness detection, we collected a dataset of strawberry images from a strawberry planting base. The dataset was split using the 5-fold cross-validation approach, which improved the model evaluation process. Experimental results showed that LS-YOLOv8s better than other models, with a 1.6 %, 33.5 %, and 3.4 % improvement in mAP0.5 on the validation set compared to YOLOv5s, CenterNet, and SSD, respectively. Moreover, LS-YOLOv8s achieved better detection precision and speed than YOLOv8m with only approximately 51.93 % of the number of parameters used, achieving 94.4 % detection precision and 19.23fps detection speed, improving by 0.5 % and 6.56fps, respectively. The LS-YOLOv8s model can provide reliable theoretical support for detecting strawberry targets, evaluating their ripeness, and automating the strawberry picking process for orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
东海帝王发布了新的文献求助10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
1秒前
听蝉发布了新的文献求助10
3秒前
zed发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助崔静宇采纳,获得10
4秒前
孤山季礼发布了新的文献求助10
4秒前
4秒前
GG完成签到,获得积分10
5秒前
体贴半仙发布了新的文献求助10
6秒前
6秒前
6秒前
愉快的元柏完成签到,获得积分10
7秒前
王子语完成签到,获得积分10
8秒前
8秒前
叽里呱啦发布了新的文献求助10
11秒前
平常心发布了新的文献求助10
11秒前
艾卡西亚毛毛雨完成签到,获得积分20
13秒前
14秒前
anne完成签到,获得积分10
14秒前
15秒前
听蝉完成签到,获得积分10
15秒前
荣誉完成签到,获得积分10
16秒前
111111完成签到,获得积分10
16秒前
13333完成签到,获得积分10
17秒前
王文静发布了新的文献求助30
18秒前
彳亍完成签到,获得积分20
19秒前
19秒前
萧水白应助科研通管家采纳,获得10
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
懵了应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153144
求助须知:如何正确求助?哪些是违规求助? 2804394
关于积分的说明 7859068
捐赠科研通 2462208
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629362
版权声明 601794