Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation

数学优化 元启发式 计算机科学 局部搜索(优化) 粒子群优化 局部最优 最大值和最小值 多群优化 Boosting(机器学习) 算法 机器学习 数学 数学分析
作者
Mohammed Qaraad,Souad Amjad,Nazar K. Hussein,M. A. Farag,Seyedali Mirjalili,Mostafa A. Elhosseini
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121417-121417 被引量:53
标识
DOI:10.1016/j.eswa.2023.121417
摘要

The Particle Swarm Optimization technique (PSO) is widely used in practical applications due to its flexibility and strong optimization performance. However, like other metaheuristic algorithms, PSO has limitations, such as a propensity to become trapped in local minima and an uneven distribution of effort between exploration and exploitation stages. A novel local search technique called QPSOL, based on PSO is the proposed solution to mitigate these issues. QPSOL aims to increase diversity and achieve a closer balance between the exploration and exploitation phases. The QPSOL incorporates a dynamic optimization strategy to enhance the method's efficiency. Unlike the novel local search strategy, which uses a new local search approach (LSA) to break out of local optima, QPSOL employs quadratic interpolation around the optimal search agent to enhance its exploitation capability and solution accuracy. These strategies complement each other and contribute to boosting PSO's convergence efficiency while seeking to balance exploration and exploitation. The proposed method is assessed using the IEEE CEC'2021 test suite, and its efficacy is evaluated against other metaheuristics and cutting-edge algorithms to determine its trustworthiness. The optimal parameters of three PV models are determined using the proposed technique and compared to different well-established algorithms. Systematic comparisons show that QPSOL is competitive with, and often outperforms, commonly used methods in research for predicting model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JunJun完成签到 ,获得积分10
1秒前
三叔应助ch采纳,获得10
5秒前
潘潘发布了新的文献求助10
6秒前
6秒前
苹果惠完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
NicheFactor完成签到,获得积分10
9秒前
飘逸若冰完成签到,获得积分10
10秒前
浅梦完成签到,获得积分10
11秒前
joe_liu发布了新的文献求助10
12秒前
12秒前
13秒前
眯眯眼的士萧完成签到 ,获得积分10
15秒前
斯文败类应助Super采纳,获得50
16秒前
16秒前
夕诙完成签到,获得积分10
17秒前
17秒前
枫竹发布了新的文献求助30
18秒前
18秒前
syfun发布了新的文献求助10
19秒前
小许同学完成签到,获得积分10
19秒前
小郑同学发布了新的文献求助20
22秒前
FrozNineTivus完成签到,获得积分10
22秒前
咕嘟咕嘟发布了新的文献求助10
23秒前
挽倾颜发布了新的文献求助10
23秒前
彪壮的绮梅完成签到,获得积分10
24秒前
24秒前
慕青应助没有答案采纳,获得10
24秒前
25秒前
开朗的豆芽完成签到,获得积分10
27秒前
领导范儿应助雷雷采纳,获得10
27秒前
28秒前
悦耳的平灵关注了科研通微信公众号
28秒前
orixero应助1111采纳,获得10
28秒前
nini完成签到,获得积分10
28秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814