Deep Hybrid Model with Trained Weights for Multimodal Sarcasm Detection

计算机科学 讽刺 人工智能 特征提取 预处理器 语音识别 模式识别(心理学) 特征(语言学) 讽刺 艺术 语言学 哲学 文学类
作者
Dnyaneshwar Bavkar,Ramgopal Kashyap,Vaishali D. Khairnar
出处
期刊:Lecture notes in networks and systems 卷期号:: 179-194 被引量:3
标识
DOI:10.1007/978-981-99-5166-6_13
摘要

Sarcasm detection is one the most challenging task in natural language processing. Though sentiment semantics are necessary to improve sarcasm detection performance, existing DL-based sarcasm detection models do not fully incorporate them. This research suggested the Hybrid RNN and Optimized LSTM for Multimodal Sarcasm Detection (HROMSD) model. The model is processed under the four stages: preprocessing, feature extraction, feature level fusion, and classification. The initial stage of this proposed technique is preprocessing, here input of the multimodal data, which comprises of text, video, and audio are preprocessed. Here, the text will be preprocessed under tokenization and stemming, the video will be preprocessed under face detection and the audio will be preprocessed under filtering technique. Then, the stage of feature extraction takes place, where the features from preprocessed text, video, and audio are extracted, here, n-grams, TF-IDF, improved Bag of Visual Words, and emojis are extracted as the text features; then CLM and improved SLBT based video features are extracted from the video features, and chroma, MFCC, jitter and special features are extracted from the audio features. The resultant extracted features set are subjected for feature level fusion stage, which makes use of an improved multilevel CCA fusion technique. The classification is carried out using Hybrid RNN and Optimized LSTM for detection purpose, where Improved BES (IBES) method utilized to increase the detection system’s performance. When compared to earlier research, the proposed work is more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搞怪夏天完成签到,获得积分10
2秒前
科目三应助123采纳,获得10
3秒前
一五发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
关七应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
shinysparrow应助科研通管家采纳,获得50
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
关七应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
薰硝壤应助小景毕业采纳,获得10
6秒前
8秒前
讨厌的十九岁完成签到,获得积分10
9秒前
zyx完成签到,获得积分10
9秒前
小鸡学习完成签到,获得积分10
10秒前
wangayting发布了新的文献求助10
10秒前
10秒前
micomico发布了新的文献求助10
11秒前
云森完成签到,获得积分10
12秒前
12秒前
乐满发布了新的文献求助10
13秒前
琉琉硫发布了新的文献求助30
13秒前
15秒前
标致的电灯胆完成签到,获得积分10
16秒前
azzkmj完成签到,获得积分10
17秒前
科研通AI2S应助CynthiaaaCat采纳,获得10
17秒前
18秒前
8R60d8应助Radon采纳,获得10
18秒前
19秒前
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237