Performance analysis of optimized versatile video coding software decoders on embedded platforms

计算机科学 SIMD公司 解码方法 编码(社会科学) 软件 视频解码器 视频质量 计算机硬件 嵌入式系统 并行计算 实时计算 算法 操作系统 统计 数学 公制(单位) 运营管理 经济
作者
Anup Saha,Wassim Hamidouche,Miguel Chavarrías,Fernando Pescador,Ibrahim Farhat
出处
期刊:Journal of Real-time Image Processing [Springer Nature]
卷期号:20 (6) 被引量:7
标识
DOI:10.1007/s11554-023-01376-7
摘要

Abstract In recent years, the global demand for high-resolution videos and the emergence of new multimedia applications have created the need for a new video coding standard. Therefore, in July 2020, the versatile video coding (VVC) standard was released, providing up to 50% bit-rate savings for the same video quality compared to its predecessor high-efficiency video coding (HEVC). However, these bit-rate savings come at the cost of high computational complexity, particularly for live applications and on resource-constrained embedded devices. This paper evaluates two optimized VVC software decoders, named OpenVVC and Versatile Video deCoder (VVdeC), designed for low resources platforms. These decoders exploit optimization techniques such as data-level parallelism using single instruction multiple data (SIMD) instructions and functional-level parallelism using frame, tile, and slice-based parallelisms. Furthermore, a comparison of decoding runtime, energy, and memory consumption between the two decoders is presented while targeting two different resource-constraint embedded devices. The results showed that both decoders achieve real-time decoding of full high-definition (FHD) resolution on the first platform using 8 cores and high-definition (HD) real-time decoding for the second platform using only 4 cores with comparable results in terms of the average energy consumed: around 26 J and 15 J for the 8 cores and 4 cores platforms, respectively. Furthermore, OpenVVC showed better results regarding memory usage with a lower average maximum memory consumed during runtime than VVdeC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费雪卉完成签到,获得积分0
刚刚
爆米花应助zzm采纳,获得10
1秒前
1秒前
上官若男应助时流采纳,获得30
2秒前
搁浅发布了新的文献求助10
2秒前
3秒前
hhh完成签到 ,获得积分10
3秒前
张小小发布了新的文献求助10
3秒前
无花果应助猪猪hero采纳,获得10
4秒前
力口氵由完成签到,获得积分10
4秒前
5秒前
隐形曼青应助石大伟采纳,获得10
5秒前
5秒前
星辰大海应助石大伟采纳,获得10
5秒前
大模型应助石大伟采纳,获得10
5秒前
5秒前
慕青应助石大伟采纳,获得10
5秒前
优雅惜雪发布了新的文献求助10
5秒前
SciGPT应助石大伟采纳,获得30
5秒前
6秒前
远山完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
李健的小迷弟应助啦啦啦采纳,获得10
7秒前
烟花应助至秦采纳,获得10
8秒前
科目三应助小美采纳,获得10
9秒前
binbin完成签到,获得积分10
9秒前
小二郎应助小孙要发SCI采纳,获得10
9秒前
由哎完成签到,获得积分10
10秒前
ii关闭了ii文献求助
10秒前
笑点低芫发布了新的文献求助10
10秒前
我歌发布了新的文献求助10
10秒前
10秒前
11秒前
Gao.完成签到,获得积分10
11秒前
洛克发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463