基因敲除
间充质干细胞
转录组
上睑下垂
细胞生物学
骨髓炎
下调和上调
生物
骨髓
炎症
癌症研究
细胞凋亡
免疫学
基因表达
基因
生物化学
炎症体
作者
Yongqing Xu,Xiangwen Shi,Yipeng Wu,Baochuang Qi,Chaoqun Zhang,Bin Wang,Bihuan Zhang,Yongqing Xu
标识
DOI:10.1016/j.intimp.2023.110843
摘要
Osteomyelitis is a refractory bone infectious disease, which usually results in progressive bone destruction and bone loss. The invasion of pathogens and subsequent inflammatory response could damage bone marrow mesenchymal stem cells (BMSCs) and inhibit osteogenic differentiation, and finally aggravate uncontrolled bone remodeling in osteomyelitis by affecting bone formation. Exploring the mechanisms of BMSCs injury and osteogenic differentiation inhibition may would help us to find potential therapeutic targets.Firstly, staphylococcal protein A (SpA)-treated human bone marrow mesenchymal stem cells (hBMSCs) were used to construct cell models of osteomyelitis. Secondly, transcriptome sequencing was performed to screen differentially expressed genes and then verified the expression of target genes. Next, in vitro experiments were conducted to explore the functions and mechanisms of prostate transmembrane protein androgen induced 1 (Pmepa1) in SpA-treated hBMSCs. Finally, the rat model of osteomyelitis was established to provide an auxiliary validation of the in vitro experimental results.We found that SpA treatment induced inflammatory injury and inhibited osteogenic differentiation in hBMSCs, then the transcriptome sequencing and further detection results showed that Pmepa1 was significantly upregulated in this process. Functionally, Pmepa1 knockdown alleviated inflammatory injury and promoted osteogenic differentiation in SpA-treated hBMSCs. Among them, it was demonstrated that Pmepa1 knockdown exerted cytoprotective effects by alleviating pyroptosis of SpA-infected hBMSCs. Furthermore, recovery experiments revealed that Pmepa1 knockdown reversed SpA-mediated adverse effects by downregulating the p38MAPK/NLRP3 axis. Finally, the detection results of rat femoral osteomyelitis showed that the expression of Pmepa1 was up-regulated, and the expression trends of other indicators including p38MAPK, NLRP3, and caspase-1 were also consistent with the in vitro model.Pmepa1 knockdown alleviates SpA-induced pyroptosis and inhibition of osteogenic differentiation in hBMSCs by downregulating p38MAPK/NLRP3 signaling axis. Modulating the expression of Pmepa1 may be a potential strategy to ameliorate osteomyelitis.
科研通智能强力驱动
Strongly Powered by AbleSci AI