Coupling Makes Better: An Intertwined Neural Network for Taxi and Ridesourcing Demand Co-Prediction

出租车 模式(计算机接口) 组分(热力学) 服务(商务) 人工神经网络 计算机科学 桥(图论) 人工智能 工程类 运筹学 运输工程 经济 经济 热力学 操作系统 物理 内科学 医学
作者
Jie Zhao,Chao Chen,Wanyi Zhang,Ruiyuan Li,Fuqiang Gu,Songtao Guo,Jun Luo,Yu Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 1691-1705 被引量:5
标识
DOI:10.1109/tits.2023.3312224
摘要

While a variety of innovative travel modes, such as taxi service and ridesourcing service, have been launched to improve the transportation efficiency, people still encounter travel problems in real life. The major cause is the imbalance between transportation supply and demand. To strike a balance, it is well-recognized that an accurate and timely passenger demand prediction model is the foundation to enable high-level human intelligence (i.e., taxi drivers) or machine intelligence (i.e., ride-hailing platforms) to allocate resources in advance. Although quite a lot of deep models have been designed to model the complicated spatial and temporal dependencies in a data-driven way, they focus on the demand prediction of a single mode and ignore the fact that passengers may shift between different modes, especially between taxis and ridesourcing cars. In this paper, we target a co-prediction problem that considers the prediction of taxi and ridesourcing as two coupled and associated tasks, and propose a novel Temporal and Spatial Intertwined Network (TSIN) that consists of two twin components and an intertwined component. Each twin in the TSIN model is able to extract spatial and temporal dependencies from its corresponding travel mode separately (i.e., intra-mode features), and the in-between intertwined component is designed to bridge the twins and allow them to exchange information (i.e., inter-mode features), thus enabling better prediction. We first evaluate our model on four real-world datasets. Results demonstrate the outstanding performance of our model and the necessity to take into account the influence between modes. Based on an additional demand data from bike in NYC, we then discuss the generalizability in coupling more transportation modes. Further results demonstrate that our proposed intertwined neural network is highly flexible and extendable, and can yield better prediction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
duxh123发布了新的文献求助10
2秒前
2秒前
3秒前
SciGPT应助夏天猫采纳,获得10
4秒前
酷波er应助单薄雁玉采纳,获得10
4秒前
lss发布了新的文献求助10
5秒前
Jack爱控球发布了新的文献求助10
5秒前
5秒前
YY完成签到,获得积分10
6秒前
香蕉觅云应助王一g采纳,获得10
6秒前
6秒前
7秒前
8秒前
充电宝应助风中的桐采纳,获得100
8秒前
金牌小魚仔应助西红柿采纳,获得10
9秒前
Zoe发布了新的文献求助10
9秒前
坚定的芷烟完成签到 ,获得积分10
10秒前
lss完成签到,获得积分10
10秒前
固的曼发布了新的文献求助10
10秒前
CodeCraft应助yhzheng采纳,获得10
10秒前
YY发布了新的文献求助10
11秒前
12秒前
丘比特应助於依白采纳,获得10
12秒前
222发布了新的文献求助10
13秒前
FashionBoy应助是苗苗丫采纳,获得10
13秒前
13秒前
科研通AI2S应助又又岩采纳,获得10
14秒前
14秒前
我是老大应助YORLAN采纳,获得10
15秒前
wuye发布了新的文献求助10
15秒前
lucy完成签到,获得积分10
15秒前
15秒前
华仔应助hushow采纳,获得30
16秒前
shelemi发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469748
求助须知:如何正确求助?哪些是违规求助? 3062929
关于积分的说明 9080652
捐赠科研通 2753160
什么是DOI,文献DOI怎么找? 1510771
邀请新用户注册赠送积分活动 698056
科研通“疑难数据库(出版商)”最低求助积分说明 698018