Reconstruction of degraded image transmitting through ocean turbulence via deep learning

湍流 计算机科学 人工神经网络 人工智能 物理 气象学
作者
Yonghao Chen,Xiaoyun Liu,Jinyang Jiang,Siyu Gao,Ying Liu,Yueqiu Jiang
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:40 (12): 2215-2215 被引量:2
标识
DOI:10.1364/josaa.494317
摘要

When a laser carrying image information is transmitted in seawater, the presence of ocean turbulence leads to significant degradation of the received information due to the effect of interference. To address this issue, we propose a deep-learning-based method to retrieve the original information from a degraded pattern. To simulate the propagation of laser beams in ocean turbulence, a model of an ocean turbulence phase screen based on the power spectrum inversion method is used. The degraded images with different turbulence conditions are produced based on the model. A Pix2Pix network architecture is built to acquire the original image information. The results indicate that the network can realize high-fidelity image recovery under various turbulence conditions based on the degraded patterns. However, as turbulence strength and transmission distance increase, the reconstruction accuracy of the Pix2Pix network decreases. To further improve the image reconstruction ability of neural network architectures, we established three networks (U-Net, Pix2Pix, and Deep-Pix2Pix) and compared their performance in retrieving the degraded patterns. Overall, the Pix2Pix network showed the best performance for image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zehua309采纳,获得10
刚刚
刚刚
刚刚
刚刚
充电宝应助知秋采纳,获得10
刚刚
科研通AI6应助天空之城采纳,获得10
刚刚
天天发布了新的文献求助10
1秒前
清心完成签到,获得积分20
1秒前
dsfsd发布了新的文献求助10
1秒前
NexusExplorer应助黄伟凯采纳,获得10
2秒前
2秒前
李健应助ayayaya采纳,获得10
2秒前
2秒前
2秒前
纯真晓灵发布了新的文献求助10
2秒前
科研通AI6应助1397采纳,获得10
2秒前
3秒前
祁无敌完成签到,获得积分0
3秒前
3秒前
hyacinth11111完成签到,获得积分10
3秒前
小豆发布了新的文献求助10
3秒前
4秒前
4秒前
葵屿发布了新的文献求助10
4秒前
lingmuhuahua发布了新的文献求助10
4秒前
田様应助顺利毕业采纳,获得10
4秒前
4秒前
4秒前
崔彤完成签到,获得积分10
5秒前
SciGPT应助无名采纳,获得10
5秒前
5秒前
5秒前
cy123发布了新的文献求助10
6秒前
雍以菱应助张开心采纳,获得20
6秒前
无花果应助jingle采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
orixero应助iii采纳,获得10
8秒前
YU完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616