TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107583-107583 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐11完成签到 ,获得积分10
1秒前
yx应助YYYh采纳,获得10
1秒前
指尖弹出盛夏完成签到,获得积分10
2秒前
Echo完成签到,获得积分10
2秒前
慕青应助念汐采纳,获得10
2秒前
2秒前
学生完成签到,获得积分20
2秒前
Rapunzel完成签到,获得积分10
3秒前
3秒前
3秒前
heart发布了新的文献求助10
4秒前
pinging完成签到,获得积分10
4秒前
科研通AI2S应助kryptonite采纳,获得50
4秒前
4秒前
优雅山柏发布了新的文献求助10
5秒前
6秒前
6秒前
Sacchride发布了新的文献求助150
7秒前
英俊的铭应助fzy采纳,获得20
7秒前
寻水的鱼发布了新的文献求助10
8秒前
Jeffery发布了新的文献求助30
8秒前
无花果应助Jasmine采纳,获得10
9秒前
分成发布了新的文献求助10
9秒前
YK发布了新的文献求助10
9秒前
yun发布了新的文献求助10
10秒前
YoroYoshi发布了新的文献求助10
10秒前
张张发布了新的文献求助10
10秒前
桐桐应助可乐采纳,获得10
11秒前
念汐完成签到,获得积分10
13秒前
HCLonely应助哈哈哈哈采纳,获得10
14秒前
能干千柳完成签到,获得积分10
15秒前
8letters发布了新的文献求助10
16秒前
17秒前
万能图书馆应助寻水的鱼采纳,获得10
18秒前
18秒前
19秒前
不安青牛应助cfd采纳,获得10
19秒前
分成完成签到,获得积分20
20秒前
科研通AI2S应助杜先生采纳,获得10
21秒前
上进生发布了新的文献求助10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229041
求助须知:如何正确求助?哪些是违规求助? 2876786
关于积分的说明 8196563
捐赠科研通 2544175
什么是DOI,文献DOI怎么找? 1374187
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621640