TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107583-107583 被引量:24
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqz07完成签到,获得积分10
刚刚
小巧涔雨完成签到,获得积分10
1秒前
fff发布了新的文献求助10
1秒前
mc完成签到,获得积分10
1秒前
七月发布了新的文献求助10
1秒前
懿懿发布了新的文献求助10
2秒前
Atalent发布了新的文献求助10
2秒前
2秒前
白芷完成签到,获得积分10
2秒前
高大山彤完成签到,获得积分10
3秒前
合适醉蝶完成签到 ,获得积分10
3秒前
3秒前
王云霞完成签到,获得积分10
4秒前
xycc完成签到,获得积分10
4秒前
4秒前
Duang发布了新的文献求助10
4秒前
开心的西瓜完成签到,获得积分10
6秒前
7秒前
北冥鱼发布了新的文献求助10
7秒前
白板完成签到,获得积分20
8秒前
10秒前
10秒前
Lucas应助Champion采纳,获得10
10秒前
有个女孩叫阿娇完成签到,获得积分10
10秒前
丰富以亦发布了新的文献求助10
11秒前
李爱国应助zzzz采纳,获得10
11秒前
xinxin0902应助研狗采纳,获得20
11秒前
11秒前
古人说发布了新的文献求助20
11秒前
yaya发布了新的文献求助10
12秒前
12秒前
Akim应助Atalent采纳,获得10
12秒前
英姑应助千衷采纳,获得10
12秒前
ppat5012完成签到,获得积分10
12秒前
美味肉蟹煲完成签到,获得积分10
13秒前
歪比巴卜发布了新的文献求助10
13秒前
13秒前
13秒前
DEF完成签到 ,获得积分10
13秒前
zero完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887