亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107583-107583 被引量:24
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的爆米花完成签到,获得积分10
2秒前
QQ完成签到,获得积分10
3秒前
5秒前
QQ发布了新的文献求助10
8秒前
9秒前
刚子完成签到 ,获得积分0
12秒前
缥缈雯发布了新的文献求助10
18秒前
甜甜纸飞机完成签到 ,获得积分10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
gexzygg应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
晓奕应助科研通管家采纳,获得10
25秒前
shhoing应助科研通管家采纳,获得10
25秒前
充电宝应助安贝的呐喊采纳,获得10
30秒前
顾矜应助缥缈雯采纳,获得10
30秒前
甜甜的紫菜完成签到 ,获得积分10
31秒前
qq完成签到 ,获得积分10
37秒前
韩学冲完成签到 ,获得积分10
47秒前
白色蒲公英完成签到,获得积分10
48秒前
sujiaoziemo完成签到,获得积分10
54秒前
BowieHuang应助Freshman采纳,获得10
55秒前
一行完成签到,获得积分10
1分钟前
iman完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
缥缈雯发布了新的文献求助10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
暴躁的鱼完成签到 ,获得积分10
1分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ff发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488