清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107583-107583 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸觅双完成签到 ,获得积分10
7秒前
chwjx完成签到 ,获得积分10
29秒前
lyj完成签到 ,获得积分10
36秒前
40秒前
四月完成签到 ,获得积分10
40秒前
浚稚完成签到 ,获得积分10
47秒前
小管完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
53秒前
wayne完成签到 ,获得积分10
55秒前
56秒前
七人七发布了新的文献求助30
1分钟前
elisa828完成签到,获得积分10
1分钟前
lzz完成签到 ,获得积分10
1分钟前
LQX2141完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助yeurekar采纳,获得10
1分钟前
沫荔完成签到 ,获得积分10
1分钟前
科研通AI5应助七人七采纳,获得30
1分钟前
charih完成签到 ,获得积分10
1分钟前
墨墨完成签到,获得积分10
1分钟前
伶俐芷珊完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
1分钟前
文献完成签到 ,获得积分10
1分钟前
1分钟前
taster发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
芋芋完成签到,获得积分10
1分钟前
taster完成签到,获得积分10
1分钟前
研友_8y2G0L完成签到,获得积分10
2分钟前
天下无马完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
欧阳完成签到,获得积分10
2分钟前
慕容飞凤完成签到,获得积分10
2分钟前
wjx完成签到 ,获得积分10
2分钟前
HCCha完成签到,获得积分10
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
2分钟前
应夏山完成签到 ,获得积分10
2分钟前
七人七发布了新的文献求助30
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008607
求助须知:如何正确求助?哪些是违规求助? 3548284
关于积分的说明 11298733
捐赠科研通 3282975
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218