TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107583-107583 被引量:24
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhengriqian完成签到,获得积分20
1秒前
赘婿应助欧阳良成采纳,获得10
1秒前
爆米花应助lion采纳,获得10
1秒前
1秒前
nihao完成签到 ,获得积分10
2秒前
2秒前
2秒前
ZephyrZY完成签到,获得积分10
2秒前
3秒前
Cunese完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
wsy发布了新的文献求助10
6秒前
zhengriqian发布了新的文献求助10
6秒前
共享精神应助义气的青枫采纳,获得10
6秒前
bt4567发布了新的文献求助10
6秒前
6秒前
yuisl完成签到,获得积分10
7秒前
7秒前
内向灵凡发布了新的文献求助10
7秒前
rei402完成签到,获得积分20
8秒前
xuxingjie发布了新的文献求助10
8秒前
wf发布了新的文献求助10
8秒前
Sea_U发布了新的文献求助10
8秒前
lifan完成签到,获得积分10
9秒前
英俊的铭应助qwwee采纳,获得10
10秒前
4444发布了新的文献求助10
10秒前
英姑应助时尚的紫山采纳,获得10
10秒前
10秒前
11秒前
甜甜的幼珊完成签到,获得积分10
11秒前
吃人不眨眼应助跑快点采纳,获得20
11秒前
12秒前
大小米发布了新的文献求助30
12秒前
hyd1640发布了新的文献求助200
14秒前
sy发布了新的文献求助10
14秒前
rei402发布了新的文献求助10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462