TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 变压器 模式识别(心理学) 编码(社会科学) 计算机视觉 图像分割 数学 量子力学 电压 统计 物理
作者
Pengfei Song,Jinjiang Li,Hui Fan,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107583-107583 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.107583
摘要

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding–decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祝睿彦发布了新的文献求助20
刚刚
波谷发布了新的文献求助10
刚刚
1秒前
bkagyin应助狗十七采纳,获得10
1秒前
斯文败类应助你hao采纳,获得10
2秒前
2Q完成签到,获得积分10
2秒前
科研小白发布了新的文献求助10
3秒前
思源应助肖雪依采纳,获得10
3秒前
3秒前
fugdu发布了新的文献求助10
3秒前
3秒前
温婉的夜山完成签到 ,获得积分10
4秒前
简单千儿发布了新的文献求助20
4秒前
5秒前
5秒前
科研通AI6应助落后乐荷采纳,获得30
5秒前
卷卷发布了新的文献求助10
5秒前
5秒前
传奇3应助苗条映寒采纳,获得10
5秒前
科研通AI6应助sunyanghu369采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
科研通AI6应助xixi采纳,获得10
7秒前
紫气东来应助多不多乐采纳,获得10
7秒前
7秒前
飘逸绾绾完成签到,获得积分10
7秒前
爆米花应助科研的小迷妹采纳,获得10
8秒前
B站萧亚轩发布了新的文献求助10
8秒前
小陈完成签到,获得积分10
8秒前
8秒前
梓萱完成签到,获得积分10
9秒前
研友_VZG7GZ应助zgliu78采纳,获得10
9秒前
Moonlight完成签到,获得积分10
9秒前
在远方发布了新的文献求助10
10秒前
jusong完成签到,获得积分10
10秒前
柏柏发布了新的文献求助10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342