Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers

医学 可解释性 随机森林 逻辑回归 重症监护室 机器学习 人工智能 支持向量机 病危 卡帕 接收机工作特性 重症监护医学 急诊医学 内科学 计算机科学 语言学 哲学
作者
Chengfu Guan,Fuxin Ma,Sijie Chang,Jinhua Zhang
出处
期刊:Critical Care [BioMed Central]
卷期号:27 (1) 被引量:14
标识
DOI:10.1186/s13054-023-04683-4
摘要

Venous thromboembolism (VTE) is a severe complication in critically ill patients, often resulting in death and long-term disability and is one of the major contributors to the global burden of disease. This study aimed to construct an interpretable machine learning (ML) model for predicting VTE in critically ill patients based on clinical features and laboratory indicators.Data for this study were extracted from the eICU Collaborative Research Database (version 2.0). A stepwise logistic regression model was used to select the predictors that were eventually included in the model. The random forest, extreme gradient boosting (XGBoost) and support vector machine algorithms were used to construct the model using fivefold cross-validation. The area under curve (AUC), accuracy, no information rate, balanced accuracy, kappa, sensitivity, specificity, precision, and F1 score were used to assess the model's performance. In addition, the DALEX package was used to improve the interpretability of the final model.This study ultimately included 109,044 patients, of which 1647 (1.5%) had VTE during ICU hospitalization. Among the three models, the Random Forest model (AUC: 0.9378; Accuracy: 0.9958; Kappa: 0.8371; Precision: 0.9095; F1 score: 0.8393; Sensitivity: 0.7791; Specificity: 0.9989) performed the best.ML models can be a reliable tool for predicting VTE in critically ill patients. Among all the models we had constructed, the random forest model was the most effective model that helps the user identify patients at high risk of VTE early so that early intervention can be implemented to reduce the burden of VTE on the patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偷乐发布了新的文献求助10
刚刚
咸鱼好闲完成签到 ,获得积分10
1秒前
宋宋完成签到,获得积分10
1秒前
1秒前
小马甲应助JoshuaChen采纳,获得10
1秒前
1秒前
彭于彦祖应助ggb采纳,获得150
1秒前
青芒果发布了新的文献求助10
1秒前
长夜变清早完成签到,获得积分10
2秒前
研友_VZG7GZ应助寒hep采纳,获得10
2秒前
星辰大海应助一袋薯片采纳,获得10
3秒前
3秒前
赘婿应助现代代双采纳,获得10
3秒前
Ava应助lw采纳,获得10
4秒前
kirren完成签到,获得积分10
4秒前
LEI完成签到 ,获得积分20
4秒前
酷波er应助T拐拐采纳,获得10
5秒前
liangerla完成签到,获得积分10
5秒前
5秒前
多喝开开完成签到,获得积分10
5秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
6秒前
李健的粉丝团团长应助lixm采纳,获得10
7秒前
7秒前
NexusExplorer应助呱呱采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
张瑜发布了新的文献求助10
8秒前
mjlv完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
樊书雪完成签到,获得积分10
9秒前
刘标发布了新的文献求助10
9秒前
z_king_d_23发布了新的文献求助10
9秒前
10秒前
AteeqBaloch完成签到,获得积分10
10秒前
张慧仪完成签到 ,获得积分20
10秒前
11秒前
11秒前
赘婿应助fancy采纳,获得10
11秒前
Xiaoxiannv完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582