Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers

医学 可解释性 随机森林 逻辑回归 重症监护室 机器学习 人工智能 支持向量机 病危 卡帕 接收机工作特性 重症监护医学 急诊医学 内科学 计算机科学 语言学 哲学
作者
Chengfu Guan,Fuxin Ma,Sijie Chang,Jinhua Zhang
出处
期刊:Critical Care [Springer Nature]
卷期号:27 (1) 被引量:11
标识
DOI:10.1186/s13054-023-04683-4
摘要

Venous thromboembolism (VTE) is a severe complication in critically ill patients, often resulting in death and long-term disability and is one of the major contributors to the global burden of disease. This study aimed to construct an interpretable machine learning (ML) model for predicting VTE in critically ill patients based on clinical features and laboratory indicators.Data for this study were extracted from the eICU Collaborative Research Database (version 2.0). A stepwise logistic regression model was used to select the predictors that were eventually included in the model. The random forest, extreme gradient boosting (XGBoost) and support vector machine algorithms were used to construct the model using fivefold cross-validation. The area under curve (AUC), accuracy, no information rate, balanced accuracy, kappa, sensitivity, specificity, precision, and F1 score were used to assess the model's performance. In addition, the DALEX package was used to improve the interpretability of the final model.This study ultimately included 109,044 patients, of which 1647 (1.5%) had VTE during ICU hospitalization. Among the three models, the Random Forest model (AUC: 0.9378; Accuracy: 0.9958; Kappa: 0.8371; Precision: 0.9095; F1 score: 0.8393; Sensitivity: 0.7791; Specificity: 0.9989) performed the best.ML models can be a reliable tool for predicting VTE in critically ill patients. Among all the models we had constructed, the random forest model was the most effective model that helps the user identify patients at high risk of VTE early so that early intervention can be implemented to reduce the burden of VTE on the patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖芷文完成签到,获得积分10
刚刚
范欣雨完成签到,获得积分10
1秒前
思源应助zhou_hu采纳,获得10
1秒前
哈哈哈哈完成签到 ,获得积分10
1秒前
1秒前
852应助枯藤老柳树采纳,获得10
2秒前
w我我我发布了新的文献求助10
2秒前
2秒前
佳丽发布了新的文献求助10
4秒前
dexrer完成签到,获得积分10
4秒前
kiminonawa应助仁爱发卡采纳,获得10
4秒前
汉堡包应助kk采纳,获得10
4秒前
dappy完成签到,获得积分10
4秒前
爱吃修勾右发布了新的文献求助100
4秒前
5秒前
Yu发布了新的文献求助10
5秒前
5秒前
要吃虾饺吗完成签到,获得积分10
6秒前
苏苏完成签到,获得积分10
6秒前
CC完成签到,获得积分10
7秒前
小白完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
XinyiZhang完成签到,获得积分10
8秒前
Equation1019完成签到,获得积分10
8秒前
唐太君发布了新的文献求助10
9秒前
达瓦里氏完成签到 ,获得积分10
10秒前
充电宝应助jhanfglin采纳,获得10
10秒前
吃人陈完成签到,获得积分10
10秒前
奥利奥完成签到,获得积分10
10秒前
一颗野生橘子完成签到,获得积分10
11秒前
内永绘里发布了新的文献求助10
11秒前
柑橘发布了新的文献求助10
11秒前
wanci应助wsh采纳,获得10
12秒前
糟糕的学姐完成签到,获得积分10
12秒前
阳佟雨南完成签到,获得积分10
13秒前
zxh发布了新的文献求助10
14秒前
微笑驳完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443