VGC-GAN: A multi-graph convolution adversarial network for stock price prediction

计算机科学 库存(枪支) 卷积神经网络 图形 人工智能 机器学习 数据挖掘 理论计算机科学 机械工程 工程类
作者
Dongbo Ma,Yuan Da,Maojun Huang,Ling Dong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121204-121204 被引量:17
标识
DOI:10.1016/j.eswa.2023.121204
摘要

Not only market signals but also disturbances of related companies influence the stock volatility of a company. Currently, most approaches that utilize inter-stock correlations rely on predetermined graphs, such as industry graphs, shareholder graphs, or event graphs, necessitating supplementary financial data. Consequently, this approach often leads to limited generalization ability of the model and incomplete representation of inter-stock relationships. Thus, this study introduces VGC-GAN, a multi-graph convolutional adversarial framework, for predicting stock prices. Initially, the proposed model generates multiple correlation graphs by analyzing historical stock data, providing a comprehensive depiction of inter-stock correlations from diverse perspectives. Subsequently, a Generative Adversarial Network (GAN) framework, augmented with Mean Square Error (MSE) loss, is constructed to enhance the predictive performance of the model. The framework combines Multi-Graph Convolutional Network (Multi-GCN) and Gated Recurrent Unit (GRU) as the generator. It undergoes supervised and adversarial training with Convolutional Neural Network (CNN), facilitating the in-depth exploration of hidden correlations between stocks and time dependence of stocks. To mitigate the impact of noise, VGC-GAN uses subsequences after Variational Mode Decomposition (VMD) with optimized parameters as input to the generator. The proposed model is evaluated on several real datasets, and the experimental results confirm its effectiveness in stock price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
may发布了新的文献求助10
1秒前
麦冬冬完成签到,获得积分10
2秒前
一束澳梅发布了新的文献求助10
3秒前
3秒前
Wang发布了新的文献求助10
3秒前
南木发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
炙热的炳发布了新的文献求助10
5秒前
6秒前
金容发布了新的文献求助10
8秒前
鑫光熠熠发布了新的文献求助10
8秒前
言言右发布了新的文献求助20
8秒前
李健的粉丝团团长应助may采纳,获得10
9秒前
if发布了新的文献求助20
9秒前
YORLAN完成签到 ,获得积分10
9秒前
小杨发布了新的文献求助10
9秒前
zhanghuan完成签到 ,获得积分20
10秒前
SciGPT应助zz采纳,获得10
10秒前
12秒前
li完成签到,获得积分10
13秒前
LQ完成签到 ,获得积分10
13秒前
酷波er应助bcxly采纳,获得10
14秒前
天天快乐应助小南采纳,获得10
14秒前
14秒前
14秒前
15秒前
所所应助无聊的无施采纳,获得10
15秒前
gkvku完成签到,获得积分10
17秒前
缄默发布了新的文献求助10
17秒前
17秒前
化学发布了新的文献求助10
17秒前
18秒前
18秒前
Pefdixe发布了新的文献求助10
18秒前
18秒前
小世界123完成签到,获得积分20
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233742
求助须知:如何正确求助?哪些是违规求助? 2880231
关于积分的说明 8214458
捐赠科研通 2547669
什么是DOI,文献DOI怎么找? 1377140
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623187