Decision-Making for Land Conservation: A Derivative-Free Optimization Framework with Nonlinear Inputs

非线性系统 数学优化 计算机科学 非线性规划 软件 人口 组分(热力学) 线性规划 期限(时间) 整数规划 最优化问题 运筹学 数学 物理 人口学 量子力学 社会学 热力学 程序设计语言
作者
Cassidy K. Buhler,Hande Y. Benson
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2308.11549
摘要

Protected areas (PAs) are designated spaces where human activities are restricted to preserve critical habitats. Decision-makers are challenged with balancing a trade-off of financial feasibility with ecological benefit when establishing PAs. Given the long-term ramifications of these decisions and the constantly shifting environment, it is crucial that PAs are carefully selected with long-term viability in mind. Using AI tools like simulation and optimization is common for designating PAs, but current decision models are primarily linear. In this paper, we propose a derivative-free optimization framework paired with a nonlinear component, population viability analysis (PVA). Formulated as a mixed integer nonlinear programming (MINLP) problem, our model allows for linear and nonlinear inputs. Connectivity, competition, crowding, and other similar concerns are handled by the PVA software, rather than expressed as constraints of the optimization model. In addition, we present numerical results that serve as a proof of concept, showing our models yield PAs with similar expected risk to that of preserving every parcel in a habitat, but at a significantly lower cost. The overall goal is to promote interdisciplinary work by providing a new mathematical programming tool for conservationists that allows for nonlinear inputs and can be paired with existing ecological software. Our code and data are available at https://github.com/cassiebuhler/conservation-dfo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气笑容完成签到,获得积分10
刚刚
yufeng完成签到 ,获得积分10
1秒前
1秒前
Jenny完成签到,获得积分10
1秒前
1秒前
科研小小小白完成签到,获得积分10
2秒前
2秒前
小橙子完成签到 ,获得积分10
3秒前
4秒前
4秒前
福娃发布了新的文献求助10
4秒前
5秒前
达斯维完成签到,获得积分10
5秒前
浪迹天涯发布了新的文献求助10
5秒前
今后应助杜嘟嘟采纳,获得30
5秒前
6秒前
6秒前
清圆527完成签到,获得积分10
6秒前
JamesPei应助Zhong采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
Emma完成签到 ,获得积分10
9秒前
9秒前
9秒前
清新的问枫完成签到,获得积分10
10秒前
10秒前
在水一方应助大方小白采纳,获得10
10秒前
阿凡达完成签到,获得积分10
10秒前
神勇的雅香应助大方小白采纳,获得10
10秒前
彬彬发布了新的文献求助10
10秒前
刘鹏宇发布了新的文献求助10
10秒前
斯文败类应助Stormi采纳,获得10
11秒前
12秒前
12秒前
木子发布了新的文献求助10
13秒前
yuyuyu完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740