A novel hydrogel electrolyte for all-climate high-performance flexible zinc-ion hybrid capacitors within temperature range from −50 to 100 °C

电解质 材料科学 化学工程 超级电容器 离子电导率 柔性电子器件 聚合物 电容器 数码产品 纳米技术 复合材料 电容 电极 化学 电气工程 电压 冶金 物理化学 工程类
作者
Yu Duan,Tian Lv,Keyi Dong,Feng Zheng,Xiao Li,Yunlong Qi,Zilin Chen,Weiyang Tang,Quanhu Sun,Shaokui Cao,Tao Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145551-145551 被引量:22
标识
DOI:10.1016/j.cej.2023.145551
摘要

Zinc-ion hybrid capacitors (ZIHCs) combining advantages of battery and supercapacitor represent a promising type of energy storage system for flexible electronics, but often suffer from limited performance stability in low or high temperature. Here, we demonstrate a type of high-performance flexible ZIHCs under all-climate from −50 to 100 °C enabled by a novel hydrogel electrolyte, which is synthesized by acrylamide, λ-carrageenan and zinc perchlorate. The three-dimensional porous structure of hydrogel can efficiently facilitate ion transport, while the formed hydrogen bonds among zinc perchlorate, water and polymer chains could largely broaden the operating temperature of the hydrogel. The hydrogel electrolyte exhibits ionic conductivities of 9.75, 45.98 and 57.14 mS cm−1 at −50, 25 and 100 °C, respectively, which indicates superior stability under all-climate environment to other previously reported results. Based on the hydrogel electrolyte, the developed ZIHCs not only exhibit high specific capacity of 125 mAh g−1 at room temperature, but also can work well within an extremely wide temperature from −50 to 100 °C. In addition, the ZIHCs possess excellent flexibility with capacity retention of 98% after 2000 bending cycles to 135°. This work provides a promising strategy to design high-performance flexible ZIHCs working in all-climate environment for flexible electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助夕荀采纳,获得10
刚刚
今后应助李志采纳,获得10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
西南风完成签到,获得积分10
1秒前
2秒前
2秒前
河大青椒完成签到,获得积分10
3秒前
雨姐科研应助xh采纳,获得10
3秒前
3秒前
3秒前
梦泊关注了科研通微信公众号
3秒前
4秒前
lilili发布了新的文献求助10
4秒前
chenping_an发布了新的文献求助10
4秒前
栗爷完成签到,获得积分10
4秒前
Two-Capitals发布了新的文献求助10
4秒前
linlin发布了新的文献求助10
5秒前
5秒前
诚心幻莲完成签到,获得积分10
5秒前
SciGPT应助俏皮的豌豆采纳,获得10
6秒前
科研通AI6应助二雷子采纳,获得10
6秒前
大力云朵完成签到,获得积分10
7秒前
SciGPT应助帆帆帆采纳,获得10
7秒前
妙妙0发布了新的文献求助10
7秒前
终澈发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
梁跃耀发布了新的文献求助10
8秒前
求助人员应助偏遇采纳,获得10
8秒前
小晴天发布了新的文献求助10
9秒前
一帆风顺发布了新的文献求助10
9秒前
小陈发布了新的文献求助10
9秒前
阳光的念寒完成签到,获得积分10
10秒前
10秒前
chem001完成签到,获得积分10
10秒前
科研通AI6应助佚名采纳,获得10
11秒前
玄魁发布了新的文献求助30
11秒前
Sandy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251