Deep operator learning-based surrogate models with uncertainty quantification for optimizing internal cooling channel rib profiles

水力直径 替代模型 频道(广播) 计算机科学 胸腔 操作员(生物学) 不确定度量化 算法 数学优化 机械 数学 物理 结构工程 机器学习 计算机网络 生物化学 化学 抑制因子 雷诺数 转录因子 湍流 基因 工程类
作者
Izzet Sahin,Christian Moya,Amirhossein Mollaali,Guang Lin,Guillermo Paniagua
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:219: 124813-124813
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124813
摘要

This paper focuses on designing surrogate models that have uncertainty quantification capabilities to effectively improve the thermal performance of rib-turbulated internal cooling channels. To construct the surrogate, we use the deep operator network (DeepONet) framework, a novel class of neural networks designed to approximate mappings between infinite-dimensional spaces using relatively small datasets. The proposed DeepONet takes an arbitrary rib geometry as input and outputs continuous detailed pressure and heat transfer distributions around the profiled ribs. The datasets needed to train and test the proposed DeepONet framework were obtained by simulating a 2D rib-roughened internal cooling channel. To accomplish this, we continuously modified the input rib geometry by adjusting the control points according to a simple random distribution with constraints, rather than following a predefined path or sampling method. The studied channel has a hydraulic diameter, Dh, of 66.7 mm, and a length-to-hydraulic diameter ratio, L/Dh, of 10. The ratio of rib center height to hydraulic diameter (e/Dh), which was not changed during the rib profile update, was maintained at a constant value of 0.048. The ribs were placed in the channel with a pitch-to-height ratio (P/e) of 10. In addition, we provide the proposed surrogates with effective uncertainty quantification capabilities. This is achieved by converting the DeepONet framework into a Bayesian DeepONet (B-DeepONet). B-DeepONet samples from the posterior distribution of DeepONet parameters using the novel framework of stochastic gradient replica-exchange MCMC. Finally, we demonstrate the performance of the proposed DeepONet-based surrogate models with uncertainty quantification by incorporating them into a constrained, gradient-free optimization problem that enhances the thermal performance of the rib-turbulated internal cooling channel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dawn发布了新的文献求助10
刚刚
清秀从霜发布了新的文献求助50
刚刚
三点半发布了新的文献求助10
刚刚
fang发布了新的文献求助10
刚刚
完美世界应助外向的钢笔采纳,获得10
刚刚
时冬冬发布了新的文献求助30
刚刚
1秒前
原野小年发布了新的文献求助10
1秒前
1秒前
良药完成签到,获得积分10
2秒前
4秒前
刘东龙发布了新的文献求助10
4秒前
4秒前
4秒前
nhh发布了新的文献求助10
5秒前
科研通AI5应助223311采纳,获得10
5秒前
Pomelo发布了新的文献求助10
5秒前
Moihan发布了新的文献求助10
5秒前
两岸叶完成签到,获得积分10
5秒前
滴滴吹螺丝号完成签到,获得积分10
6秒前
6秒前
疯狂的向日葵完成签到,获得积分10
6秒前
cyy发布了新的文献求助20
7秒前
0318应助黛宝采纳,获得10
8秒前
许win完成签到,获得积分10
8秒前
Chenly发布了新的文献求助10
8秒前
SaqLa发布了新的文献求助10
9秒前
Orange应助zhai采纳,获得10
9秒前
9秒前
研友_nqyWWn完成签到,获得积分10
9秒前
仄言完成签到,获得积分10
10秒前
归尘发布了新的文献求助10
10秒前
科研通AI5应助天真的夜山采纳,获得10
11秒前
shadow完成签到 ,获得积分10
11秒前
Jasper应助善良的采蓝采纳,获得10
11秒前
12秒前
12秒前
原野小年完成签到,获得积分10
12秒前
波粒海苔发布了新的文献求助10
12秒前
无花果应助weilei采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339