Deep operator learning-based surrogate models with uncertainty quantification for optimizing internal cooling channel rib profiles

水力直径 替代模型 频道(广播) 计算机科学 胸腔 操作员(生物学) 不确定度量化 算法 数学优化 机械 数学 物理 结构工程 机器学习 化学 雷诺数 抑制因子 湍流 工程类 基因 转录因子 生物化学 计算机网络
作者
Izzet Sahin,Christian Moya,Amirhossein Mollaali,Guang Lin,Guillermo Paniagua
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:219: 124813-124813
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124813
摘要

This paper focuses on designing surrogate models that have uncertainty quantification capabilities to effectively improve the thermal performance of rib-turbulated internal cooling channels. To construct the surrogate, we use the deep operator network (DeepONet) framework, a novel class of neural networks designed to approximate mappings between infinite-dimensional spaces using relatively small datasets. The proposed DeepONet takes an arbitrary rib geometry as input and outputs continuous detailed pressure and heat transfer distributions around the profiled ribs. The datasets needed to train and test the proposed DeepONet framework were obtained by simulating a 2D rib-roughened internal cooling channel. To accomplish this, we continuously modified the input rib geometry by adjusting the control points according to a simple random distribution with constraints, rather than following a predefined path or sampling method. The studied channel has a hydraulic diameter, Dh, of 66.7 mm, and a length-to-hydraulic diameter ratio, L/Dh, of 10. The ratio of rib center height to hydraulic diameter (e/Dh), which was not changed during the rib profile update, was maintained at a constant value of 0.048. The ribs were placed in the channel with a pitch-to-height ratio (P/e) of 10. In addition, we provide the proposed surrogates with effective uncertainty quantification capabilities. This is achieved by converting the DeepONet framework into a Bayesian DeepONet (B-DeepONet). B-DeepONet samples from the posterior distribution of DeepONet parameters using the novel framework of stochastic gradient replica-exchange MCMC. Finally, we demonstrate the performance of the proposed DeepONet-based surrogate models with uncertainty quantification by incorporating them into a constrained, gradient-free optimization problem that enhances the thermal performance of the rib-turbulated internal cooling channel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任笑白完成签到 ,获得积分10
1秒前
Livvia完成签到,获得积分10
1秒前
Pwrry完成签到,获得积分10
2秒前
亮仔完成签到,获得积分10
3秒前
斯文的天奇完成签到 ,获得积分10
3秒前
安详的韩庆完成签到,获得积分10
3秒前
harric完成签到,获得积分10
4秒前
123456完成签到,获得积分20
4秒前
澈千子完成签到,获得积分10
4秒前
曾建完成签到 ,获得积分10
4秒前
chen完成签到 ,获得积分10
5秒前
喜东东完成签到,获得积分10
5秒前
孤独梦曼完成签到,获得积分10
5秒前
Jasper应助慕容松采纳,获得10
6秒前
亮仔发布了新的文献求助10
7秒前
7秒前
HAL9000完成签到,获得积分10
7秒前
昵称完成签到,获得积分10
8秒前
和平发展完成签到,获得积分10
8秒前
本草石之寒温完成签到 ,获得积分10
8秒前
Lucas应助可乐采纳,获得10
9秒前
10秒前
吕布完成签到,获得积分10
10秒前
10秒前
10秒前
Owen应助yy采纳,获得10
11秒前
licheng完成签到,获得积分10
11秒前
灰太狼大王完成签到 ,获得积分10
12秒前
稳重的蜡烛完成签到,获得积分10
12秒前
Aoia完成签到,获得积分10
13秒前
星月夜完成签到,获得积分10
13秒前
哈哈完成签到,获得积分10
13秒前
13秒前
LVMIN发布了新的文献求助10
13秒前
秋秋完成签到,获得积分10
14秒前
天阳完成签到,获得积分10
14秒前
tfr06完成签到,获得积分10
14秒前
Conccuc完成签到,获得积分10
15秒前
街上的狗完成签到,获得积分0
15秒前
wyu完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855