亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep operator learning-based surrogate models with uncertainty quantification for optimizing internal cooling channel rib profiles

水力直径 替代模型 频道(广播) 计算机科学 胸腔 操作员(生物学) 不确定度量化 算法 数学优化 机械 数学 物理 结构工程 机器学习 计算机网络 生物化学 化学 抑制因子 雷诺数 转录因子 湍流 基因 工程类
作者
Izzet Sahin,Christian Moya,Amirhossein Mollaali,Guang Lin,Guillermo Paniagua
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:219: 124813-124813
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124813
摘要

This paper focuses on designing surrogate models that have uncertainty quantification capabilities to effectively improve the thermal performance of rib-turbulated internal cooling channels. To construct the surrogate, we use the deep operator network (DeepONet) framework, a novel class of neural networks designed to approximate mappings between infinite-dimensional spaces using relatively small datasets. The proposed DeepONet takes an arbitrary rib geometry as input and outputs continuous detailed pressure and heat transfer distributions around the profiled ribs. The datasets needed to train and test the proposed DeepONet framework were obtained by simulating a 2D rib-roughened internal cooling channel. To accomplish this, we continuously modified the input rib geometry by adjusting the control points according to a simple random distribution with constraints, rather than following a predefined path or sampling method. The studied channel has a hydraulic diameter, Dh, of 66.7 mm, and a length-to-hydraulic diameter ratio, L/Dh, of 10. The ratio of rib center height to hydraulic diameter (e/Dh), which was not changed during the rib profile update, was maintained at a constant value of 0.048. The ribs were placed in the channel with a pitch-to-height ratio (P/e) of 10. In addition, we provide the proposed surrogates with effective uncertainty quantification capabilities. This is achieved by converting the DeepONet framework into a Bayesian DeepONet (B-DeepONet). B-DeepONet samples from the posterior distribution of DeepONet parameters using the novel framework of stochastic gradient replica-exchange MCMC. Finally, we demonstrate the performance of the proposed DeepONet-based surrogate models with uncertainty quantification by incorporating them into a constrained, gradient-free optimization problem that enhances the thermal performance of the rib-turbulated internal cooling channel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
2秒前
xlj发布了新的文献求助10
3秒前
3秒前
33发布了新的文献求助10
6秒前
11秒前
zhoufz完成签到,获得积分20
29秒前
里昂发布了新的文献求助60
30秒前
53秒前
阿婧完成签到 ,获得积分10
56秒前
里昂完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
姗姗发布了新的文献求助10
2分钟前
英俊的铭应助姗姗采纳,获得30
2分钟前
姗姗完成签到,获得积分10
2分钟前
852应助堪冷之采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
fangye发布了新的文献求助100
4分钟前
4分钟前
xingsixs完成签到 ,获得积分10
5分钟前
整齐的不评完成签到,获得积分10
5分钟前
李健的小迷弟应助xl采纳,获得10
5分钟前
可夫司机完成签到 ,获得积分10
6分钟前
Yian应助科研通管家采纳,获得10
6分钟前
6分钟前
xl发布了新的文献求助10
6分钟前
fangye完成签到,获得积分10
6分钟前
6分钟前
王洋发布了新的文献求助10
6分钟前
7分钟前
xinxin0902发布了新的文献求助10
7分钟前
xinxin0902完成签到,获得积分10
7分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
温柔板栗应助科研通管家采纳,获得10
8分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
9分钟前
堪冷之发布了新的文献求助30
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641