G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations

计算机科学 可扩展性 并行计算 深度学习 内存管理 交错存储器 内存映射 编译程序 计算机体系结构 记忆模型 平面存储模型 计算机硬件 半导体存储器 共享内存 操作系统 人工智能
作者
Haoyang Zhang,Yuanyuan Zhou,Xue Yang,Yiqi Liu,Jian Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3613424.3614309
摘要

To break the GPU memory wall for scaling deep learning workloads, a variety of architecture and system techniques have been proposed recently. Their typical approaches include memory extension with flash memory and direct storage access. However, these techniques still suffer from suboptimal performance and introduce complexity to the GPU memory management, making them hard to meet the scalability requirement of deep learning workloads today. In this paper, we present a unified GPU memory and storage architecture named G10 driven by the fact that the tensor behaviors of deep learning workloads are highly predictable. G10 integrates the host memory, GPU memory, and flash memory into a unified memory space, to scale the GPU memory capacity while enabling transparent data migrations. Based on this unified GPU memory and storage architecture, G10 utilizes compiler techniques to characterize the tensor behaviors in deep learning workloads. Therefore, it can schedule data migrations in advance by considering the available bandwidth of flash memory and host memory. The cooperative mechanism between deep learning compilers and the unified memory architecture enables G10 to hide data transfer overheads in a transparent manner. We implement G10 based on an open-source GPU simulator. Our experiments demonstrate that G10 outperforms state-of-the-art GPU memory solutions by up to 1.75$\times$, without code modifications to deep learning workloads. With the smart data migration mechanism, G10 can reach 90.3\% of the performance of the ideal case assuming unlimited GPU memory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
核潜艇很优秀应助嘻嘻采纳,获得30
1秒前
大勺完成签到 ,获得积分10
2秒前
明理的凡霜完成签到,获得积分10
2秒前
sqb完成签到,获得积分10
3秒前
曾经曼梅发布了新的文献求助10
3秒前
3秒前
无极微光应助瘦瘦采纳,获得20
3秒前
连长发布了新的文献求助10
3秒前
Pooh发布了新的文献求助10
3秒前
LYDZ2发布了新的文献求助10
3秒前
4秒前
4秒前
啊棕完成签到,获得积分10
5秒前
SciGPT应助Ttttt采纳,获得10
5秒前
6秒前
dudu完成签到,获得积分10
7秒前
8秒前
无极微光应助婷123采纳,获得20
9秒前
9秒前
多情的奄完成签到,获得积分10
9秒前
情怀应助小乙大夫采纳,获得10
9秒前
Jinnnnn发布了新的文献求助10
9秒前
满天星完成签到,获得积分10
10秒前
TingtingGZ发布了新的文献求助10
11秒前
清河聂氏发布了新的文献求助10
11秒前
pluto应助曾经曼梅采纳,获得10
11秒前
12秒前
丘比特应助自由的尔蓉采纳,获得10
12秒前
孙子豪完成签到,获得积分10
12秒前
13秒前
852应助Lchemistry采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
星辰大海应助动听的寻芹采纳,获得10
13秒前
14秒前
顾矜应助小佳同学采纳,获得10
14秒前
古灵井盖完成签到,获得积分10
14秒前
雄鹰般的女子完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006