G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations

计算机科学 可扩展性 并行计算 深度学习 内存管理 交错存储器 内存映射 编译程序 计算机体系结构 记忆模型 平面存储模型 计算机硬件 半导体存储器 共享内存 操作系统 人工智能
作者
Haoyang Zhang,Yuanyuan Zhou,Xue Yang,Yiqi Liu,Jian Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3613424.3614309
摘要

To break the GPU memory wall for scaling deep learning workloads, a variety of architecture and system techniques have been proposed recently. Their typical approaches include memory extension with flash memory and direct storage access. However, these techniques still suffer from suboptimal performance and introduce complexity to the GPU memory management, making them hard to meet the scalability requirement of deep learning workloads today. In this paper, we present a unified GPU memory and storage architecture named G10 driven by the fact that the tensor behaviors of deep learning workloads are highly predictable. G10 integrates the host memory, GPU memory, and flash memory into a unified memory space, to scale the GPU memory capacity while enabling transparent data migrations. Based on this unified GPU memory and storage architecture, G10 utilizes compiler techniques to characterize the tensor behaviors in deep learning workloads. Therefore, it can schedule data migrations in advance by considering the available bandwidth of flash memory and host memory. The cooperative mechanism between deep learning compilers and the unified memory architecture enables G10 to hide data transfer overheads in a transparent manner. We implement G10 based on an open-source GPU simulator. Our experiments demonstrate that G10 outperforms state-of-the-art GPU memory solutions by up to 1.75$\times$, without code modifications to deep learning workloads. With the smart data migration mechanism, G10 can reach 90.3\% of the performance of the ideal case assuming unlimited GPU memory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
世界小奇发布了新的文献求助10
刚刚
乐乐应助默默的含烟采纳,获得10
1秒前
ss发布了新的文献求助10
1秒前
1秒前
bjyx完成签到,获得积分10
2秒前
善学以致用应助111采纳,获得10
3秒前
loser发布了新的文献求助10
3秒前
3秒前
斯文若之发布了新的文献求助10
3秒前
走四方发布了新的文献求助10
3秒前
Ava应助yxy采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
XQJ发布了新的文献求助10
6秒前
7秒前
CUI完成签到,获得积分10
7秒前
7秒前
7秒前
ikutovaya完成签到,获得积分10
7秒前
畅快安白发布了新的文献求助10
8秒前
SciGPT应助研友_8QxayZ采纳,获得10
8秒前
脑洞疼应助璐璐核桃露采纳,获得10
8秒前
ho发布了新的文献求助50
9秒前
9秒前
10秒前
10秒前
辛辛那提发布了新的文献求助10
10秒前
酷波er应助腼腆的缘分采纳,获得10
10秒前
11秒前
yeoyoo发布了新的文献求助10
11秒前
ChemNiko发布了新的文献求助10
11秒前
小丹完成签到 ,获得积分10
12秒前
桐桐应助体贴绮露采纳,获得10
12秒前
CUI发布了新的文献求助10
12秒前
糖豆豆发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679