已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pseudo Labels for Unsupervised Domain Adaptation: A Review

计算机科学 人工智能 不可用 机器学习 特征(语言学) 边际分布 概率分布 领域(数学分析) 任务(项目管理) 条件概率分布 学习迁移 条件概率 联合概率分布 模式识别(心理学) 数学 随机变量 统计 工程类 数学分析 哲学 语言学 系统工程
作者
Yundong Li,Longxia Guo,Yizheng Ge
出处
期刊:Electronics [MDPI AG]
卷期号:12 (15): 3325-3325 被引量:12
标识
DOI:10.3390/electronics12153325
摘要

Conventional machine learning relies on two presumptions: (1) the training and testing datasets follow the same independent distribution, and (2) an adequate quantity of samples is essential for achieving optimal model performance during training. Nevertheless, meeting these two assumptions can be challenging in real-world scenarios. Domain adaptation (DA) is a subfield of transfer learning that focuses on reducing the distribution difference between the source domain (Ds) and target domain (Dt) and subsequently applying the knowledge gained from the Ds task to the Dt task. The majority of current DA methods aim to achieve domain invariance by aligning the marginal probability distributions of the Ds. and Dt. Recent studies have pointed out that aligning marginal probability distributions alone is not sufficient and that alignment of conditional probability distributions is equally important for knowledge migration. Nonetheless, unsupervised DA presents a more significant difficulty in aligning the conditional probability distributions because of the unavailability of labels for the Dt. In response to this issue, there have been several proposed methods by researchers, including pseudo-labeling, which offer novel solutions to tackle the problem. In this paper, we systematically analyze various pseudo-labeling algorithms and their applications in unsupervised DA. First , we summarize the pseudo-label generation methods based on the single and multiple classifiers and actions taken to deal with the problem of imbalanced samples. Second, we investigate the application of pseudo-labeling in category feature alignment and improving feature discrimination. Finally, we point out the challenges and trends of pseudo-labeling algorithms. As far as we know, this article is the initial review of pseudo-labeling techniques for unsupervised DA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明梦容发布了新的文献求助10
1秒前
LZHWSND发布了新的文献求助10
1秒前
enli发布了新的文献求助10
1秒前
1秒前
3秒前
in应助慈祥的翠桃采纳,获得20
5秒前
一一应助慈祥的翠桃采纳,获得30
5秒前
5秒前
共享精神应助慈祥的翠桃采纳,获得10
5秒前
华仔应助慈祥的翠桃采纳,获得10
5秒前
爆米花应助慈祥的翠桃采纳,获得20
6秒前
priss111应助慈祥的翠桃采纳,获得30
6秒前
打打应助慈祥的翠桃采纳,获得20
6秒前
顾矜应助慈祥的翠桃采纳,获得10
6秒前
深情安青应助慈祥的翠桃采纳,获得10
6秒前
充电宝应助慈祥的翠桃采纳,获得10
6秒前
cctv18应助完美的海秋采纳,获得10
6秒前
墨晟蘅完成签到,获得积分10
6秒前
激昂的沛柔完成签到,获得积分10
7秒前
7秒前
8秒前
黄憨憨发布了新的文献求助10
8秒前
墨晟蘅发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
2323发布了新的文献求助10
12秒前
酷炫笑翠发布了新的文献求助10
12秒前
小豪发布了新的文献求助10
14秒前
DE2022发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
wy.he应助淡然的咖啡豆采纳,获得10
17秒前
qqqqgc发布了新的文献求助10
17秒前
小小莫完成签到 ,获得积分10
18秒前
19秒前
NexusExplorer应助DE2022采纳,获得10
21秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244538
求助须知:如何正确求助?哪些是违规求助? 2888246
关于积分的说明 8251936
捐赠科研通 2556656
什么是DOI,文献DOI怎么找? 1385110
科研通“疑难数据库(出版商)”最低求助积分说明 650025
邀请新用户注册赠送积分活动 626177