Pseudo Labels for Unsupervised Domain Adaptation: A Review

计算机科学 人工智能 不可用 机器学习 特征(语言学) 边际分布 概率分布 领域(数学分析) 任务(项目管理) 条件概率分布 学习迁移 条件概率 联合概率分布 模式识别(心理学) 数学 随机变量 统计 工程类 哲学 数学分析 系统工程 语言学
作者
Yundong Li,Longxia Guo,Yizheng Ge
出处
期刊:Electronics [MDPI AG]
卷期号:12 (15): 3325-3325 被引量:12
标识
DOI:10.3390/electronics12153325
摘要

Conventional machine learning relies on two presumptions: (1) the training and testing datasets follow the same independent distribution, and (2) an adequate quantity of samples is essential for achieving optimal model performance during training. Nevertheless, meeting these two assumptions can be challenging in real-world scenarios. Domain adaptation (DA) is a subfield of transfer learning that focuses on reducing the distribution difference between the source domain (Ds) and target domain (Dt) and subsequently applying the knowledge gained from the Ds task to the Dt task. The majority of current DA methods aim to achieve domain invariance by aligning the marginal probability distributions of the Ds. and Dt. Recent studies have pointed out that aligning marginal probability distributions alone is not sufficient and that alignment of conditional probability distributions is equally important for knowledge migration. Nonetheless, unsupervised DA presents a more significant difficulty in aligning the conditional probability distributions because of the unavailability of labels for the Dt. In response to this issue, there have been several proposed methods by researchers, including pseudo-labeling, which offer novel solutions to tackle the problem. In this paper, we systematically analyze various pseudo-labeling algorithms and their applications in unsupervised DA. First , we summarize the pseudo-label generation methods based on the single and multiple classifiers and actions taken to deal with the problem of imbalanced samples. Second, we investigate the application of pseudo-labeling in category feature alignment and improving feature discrimination. Finally, we point out the challenges and trends of pseudo-labeling algorithms. As far as we know, this article is the initial review of pseudo-labeling techniques for unsupervised DA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如是之人发布了新的文献求助10
刚刚
如是之人发布了新的文献求助10
刚刚
sun完成签到,获得积分10
刚刚
刚刚
刚刚
夏天发布了新的文献求助10
刚刚
力颗咪发布了新的文献求助10
1秒前
1秒前
如是之人发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
1秒前
Hwchaodoctor完成签到,获得积分10
1秒前
田様应助vince采纳,获得10
1秒前
1秒前
如是之人发布了新的文献求助10
1秒前
如是之人发布了新的文献求助10
1秒前
如是之人发布了新的文献求助10
2秒前
如是之人发布了新的文献求助10
2秒前
2秒前
luckyyhy发布了新的文献求助10
2秒前
2秒前
风雅发布了新的文献求助10
2秒前
传奇3应助一方通行采纳,获得10
2秒前
2秒前
3秒前
羊六七发布了新的文献求助20
3秒前
cr123发布了新的文献求助10
3秒前
杜瑞豪完成签到,获得积分10
3秒前
在水一方应助英勇映波采纳,获得10
4秒前
无限的千琴完成签到,获得积分10
4秒前
shan完成签到,获得积分20
4秒前
昌升完成签到,获得积分20
4秒前
易大师完成签到,获得积分10
4秒前
自由迎曼发布了新的文献求助10
5秒前
5秒前
5秒前
aaaaaa发布了新的文献求助10
6秒前
Y1417完成签到,获得积分20
6秒前
浮游应助妮宝采纳,获得10
6秒前
y1628521397完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688