Pseudo Labels for Unsupervised Domain Adaptation: A Review

计算机科学 人工智能 不可用 机器学习 特征(语言学) 边际分布 概率分布 领域(数学分析) 任务(项目管理) 条件概率分布 学习迁移 条件概率 联合概率分布 模式识别(心理学) 数学 随机变量 统计 工程类 哲学 数学分析 系统工程 语言学
作者
Yundong Li,Longxia Guo,Yizheng Ge
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (15): 3325-3325 被引量:12
标识
DOI:10.3390/electronics12153325
摘要

Conventional machine learning relies on two presumptions: (1) the training and testing datasets follow the same independent distribution, and (2) an adequate quantity of samples is essential for achieving optimal model performance during training. Nevertheless, meeting these two assumptions can be challenging in real-world scenarios. Domain adaptation (DA) is a subfield of transfer learning that focuses on reducing the distribution difference between the source domain (Ds) and target domain (Dt) and subsequently applying the knowledge gained from the Ds task to the Dt task. The majority of current DA methods aim to achieve domain invariance by aligning the marginal probability distributions of the Ds. and Dt. Recent studies have pointed out that aligning marginal probability distributions alone is not sufficient and that alignment of conditional probability distributions is equally important for knowledge migration. Nonetheless, unsupervised DA presents a more significant difficulty in aligning the conditional probability distributions because of the unavailability of labels for the Dt. In response to this issue, there have been several proposed methods by researchers, including pseudo-labeling, which offer novel solutions to tackle the problem. In this paper, we systematically analyze various pseudo-labeling algorithms and their applications in unsupervised DA. First , we summarize the pseudo-label generation methods based on the single and multiple classifiers and actions taken to deal with the problem of imbalanced samples. Second, we investigate the application of pseudo-labeling in category feature alignment and improving feature discrimination. Finally, we point out the challenges and trends of pseudo-labeling algorithms. As far as we know, this article is the initial review of pseudo-labeling techniques for unsupervised DA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
高文强完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
背水完成签到 ,获得积分10
7秒前
7秒前
萧水白发布了新的文献求助100
8秒前
tlx发布了新的文献求助30
9秒前
隐形曼青应助拔丝香芋采纳,获得10
9秒前
Xieyusen发布了新的文献求助10
10秒前
fantastic完成签到,获得积分10
11秒前
静默完成签到,获得积分10
11秒前
森森完成签到,获得积分10
11秒前
优秀元枫发布了新的文献求助10
11秒前
哈哈发布了新的文献求助10
11秒前
dudu10000发布了新的文献求助10
14秒前
秀丽的大门完成签到,获得积分10
14秒前
机智的绿野完成签到,获得积分10
15秒前
15秒前
17秒前
30040完成签到,获得积分10
20秒前
CodeCraft应助优秀元枫采纳,获得10
20秒前
念姬发布了新的文献求助10
21秒前
Suttier发布了新的文献求助10
21秒前
孙枭雪完成签到,获得积分10
24秒前
甜甜豁完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
爆米花应助YEM采纳,获得10
28秒前
斯文败类应助冷静的奇迹采纳,获得10
30秒前
31秒前
32秒前
srf0602.完成签到,获得积分10
32秒前
Jacrous发布了新的文献求助10
32秒前
tlx完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432