With the development of neuroimaging technology and deep learning methods, neural decoding with functional Magnetic Resonance Imaging (fMRI) of human brain has attracted more and more attention. Neural reconstruction task, which intends to reconstruct stimulus images from fMRI, is one of the most challenging tasks in neural decoding. Due to the instability of neural signals, trials of fMRI collected under the same stimulus prove to be very different, which leads to the poor robustness and generalization ability of the existing models. In this work, we propose a robust brain-to-image model based on cross-domain contrastive learning. With deep neural network (DNN) features as paradigms, our model can extract features of stimulus stably and generate reconstructed images via DCGAN. Experiments on the benchmark Deep Image Reconstruction dataset show that our method can enhance the robustness of reconstruction significantly.