A survey of strategy-driven evasion methods for PE malware: Transformation, concealment, and attack

逃避(道德) 恶意软件 计算机科学 计算机安全 隐病毒学 混淆 网络空间 过程(计算) 隐蔽的 数据科学 互联网 万维网 免疫系统 免疫学 生物 操作系统 语言学 哲学
作者
Jiaxuan Geng,Junfeng Wang,Zhiyang Fang,Yingjie Zhou,Di Wu,Wenhan Ge
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103595-103595 被引量:4
标识
DOI:10.1016/j.cose.2023.103595
摘要

The continuous proliferation of malware poses a formidable threat to the cyberspace landscape. Researchers have proffered a multitude of sophisticated defense mechanisms aimed at its detection and mitigation. Nevertheless, malware writers persistently pursue pioneering and innovative methods to evade detection by security software, thereby presenting an ever-evolving and dynamic threat to computer systems. Malware evasion refers to the use of certain strategies by malware to evade the detection of security software. Despite numerous surveys on malware evasion techniques, the existing surveys were fragmented and focused on specific types of evasion methods, leading to a lack of systematic and comprehensive research on malware evasion approaches. To fill this gap, this paper proposed a strategy-driven framework from the perspective of malware writers. Based on this framework, we categorize existing evasion detection techniques into transformation (alter the structural and behavioral pattern of the malware), concealment (conceal the behavior of the malware), and attack-based (engage in an attack on the detector to render it inoperable) methods and conduct a comprehensive survey of the relevant research works. In addition, we demonstrate how to integrate existing evasion strategies in the process of generating malware from the perspective of malware writers to subvert the multiple defenses of defenders. Our investigation indicates that: 1) evasion techniques such as packer and code obfuscation remain the foremost selection for attackers, no fewer than 10 off-the-shelf tools provide great assistance to them, 2) environment analysis is the primary concealment-based strategy used by the attacker (48% of the reviewed concealment-based strategy), defenders need greater efforts to counter them, 3) only 3 works discussed techniques for evasion attacks by leveraging fragilities in antivirus engines, meaning that direct attack on the detector is no longer as effective, 4) reinforcement learning algorithm serves as the most popular adversarial attack-based methods and 50% of works based on reinforcement learning are effective against real-world antivirus engines. Furthermore, this paper delves into the development trends in evasive malware and open issues for defenders. The primary objective of this survey is to furnish researchers and practitioners with a thorough comprehension of malware evasion strategies and techniques, thereby fostering the advancement of more potent and efficient approaches to detect and thwart malware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助不和可乐采纳,获得10
2秒前
2秒前
carbonhan发布了新的文献求助10
2秒前
大橘发布了新的文献求助10
3秒前
许宗菊发布了新的文献求助10
5秒前
5秒前
cherry完成签到,获得积分20
5秒前
s0x0y0发布了新的文献求助10
8秒前
木子完成签到 ,获得积分10
9秒前
学术小垃圾完成签到,获得积分10
10秒前
青鸟飞鱼完成签到,获得积分10
11秒前
11秒前
博士加油完成签到,获得积分10
13秒前
单于世立完成签到,获得积分10
13秒前
14秒前
Jasper应助z_rainbow采纳,获得10
14秒前
大橘完成签到,获得积分20
14秒前
土豆丝完成签到,获得积分10
15秒前
tender完成签到,获得积分10
16秒前
大有阳光应助PANSIXUAN采纳,获得20
17秒前
18秒前
24秒前
无私千风完成签到 ,获得积分10
24秒前
爆米花完成签到,获得积分10
25秒前
SS小天使发布了新的文献求助20
26秒前
s0x0y0发布了新的文献求助10
26秒前
29秒前
30秒前
36秒前
无花果应助s0x0y0采纳,获得10
38秒前
五小完成签到 ,获得积分20
39秒前
高兴荔枝发布了新的文献求助10
39秒前
pgg完成签到,获得积分20
40秒前
xiaobei完成签到,获得积分10
40秒前
qujunming完成签到 ,获得积分10
41秒前
研友_8Y26PL发布了新的文献求助10
42秒前
43秒前
44秒前
迅速冥茗完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905