PhaGenus: genus-level classification of bacteriophages using a Transformer model

康蒂格 复制 计算机科学 生物分类 人工智能 机器学习 生物 计算生物学 遗传学 进化生物学 基因 基因组 数学 统计
作者
Jiaojiao Guan,Peng Cheng,Jiayu Shang,Xubo Tang,Yanni Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad408
摘要

Abstract Motivation Bacteriophages (phages for short), which prey on and replicate within bacterial cells, have a significant role in modulating microbial communities and hold potential applications in treating antibiotic resistance. The advancement of high-throughput sequencing technology contributes to the discovery of phages tremendously. However, the taxonomic classification of assembled phage contigs still faces several challenges, including high genetic diversity, lack of a stable taxonomy system and limited knowledge of phage annotations. Despite extensive efforts, existing tools have not yet achieved an optimal balance between prediction rate and accuracy. Results In this work, we develop a learning-based model named PhaGenus, which conducts genus-level taxonomic classification for phage contigs. PhaGenus utilizes a powerful Transformer model to learn the association between protein clusters and support the classification of up to 508 genera. We tested PhaGenus on four datasets in different scenarios. The experimental results show that PhaGenus outperforms state-of-the-art methods in predicting low-similarity datasets, achieving an improvement of at least 13.7%. Additionally, PhaGenus is highly effective at identifying previously uncharacterized genera that are not represented in reference databases, with an improvement of 8.52%. The analysis of the infants’ gut and GOV2.0 dataset demonstrates that PhaGenus can be used to classify more contigs with higher accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽丽应助太叔友蕊采纳,获得10
刚刚
1秒前
嘿嘿发布了新的文献求助10
1秒前
情怀应助QSY采纳,获得30
1秒前
朴实一一发布了新的文献求助10
1秒前
1秒前
2秒前
明小丽发布了新的文献求助20
2秒前
001发布了新的文献求助10
3秒前
3秒前
3秒前
小马甲应助晚风的柔风6采纳,获得10
3秒前
4秒前
4秒前
5秒前
Evi完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
6秒前
虚心飞鸟完成签到,获得积分10
6秒前
terryok发布了新的文献求助10
6秒前
7秒前
8秒前
SHENGXI完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
朴实一一完成签到,获得积分10
8秒前
8秒前
BCS完成签到,获得积分10
8秒前
王菲完成签到,获得积分10
8秒前
TianY完成签到,获得积分10
8秒前
脑洞疼应助asd110采纳,获得10
9秒前
yyyyyyyyjt发布了新的文献求助10
9秒前
嘻嘻乙烯发布了新的文献求助10
10秒前
10秒前
10秒前
zz发布了新的文献求助10
10秒前
10秒前
想学习发布了新的文献求助10
11秒前
耶斯发布了新的文献求助10
12秒前
13秒前
Jared应助hbhbj采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531105
求助须知:如何正确求助?哪些是违规求助? 4620029
关于积分的说明 14571024
捐赠科研通 4559472
什么是DOI,文献DOI怎么找? 2498457
邀请新用户注册赠送积分活动 1478413
关于科研通互助平台的介绍 1449928