PhaGenus: genus-level classification of bacteriophages using a Transformer model

康蒂格 复制 计算机科学 生物分类 人工智能 机器学习 生物 计算生物学 遗传学 进化生物学 基因 基因组 数学 统计
作者
Jiaojiao Guan,Peng Cheng,Jiayu Shang,Xubo Tang,Yanni Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad408
摘要

Abstract Motivation Bacteriophages (phages for short), which prey on and replicate within bacterial cells, have a significant role in modulating microbial communities and hold potential applications in treating antibiotic resistance. The advancement of high-throughput sequencing technology contributes to the discovery of phages tremendously. However, the taxonomic classification of assembled phage contigs still faces several challenges, including high genetic diversity, lack of a stable taxonomy system and limited knowledge of phage annotations. Despite extensive efforts, existing tools have not yet achieved an optimal balance between prediction rate and accuracy. Results In this work, we develop a learning-based model named PhaGenus, which conducts genus-level taxonomic classification for phage contigs. PhaGenus utilizes a powerful Transformer model to learn the association between protein clusters and support the classification of up to 508 genera. We tested PhaGenus on four datasets in different scenarios. The experimental results show that PhaGenus outperforms state-of-the-art methods in predicting low-similarity datasets, achieving an improvement of at least 13.7%. Additionally, PhaGenus is highly effective at identifying previously uncharacterized genera that are not represented in reference databases, with an improvement of 8.52%. The analysis of the infants’ gut and GOV2.0 dataset demonstrates that PhaGenus can be used to classify more contigs with higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚完成签到,获得积分10
刚刚
刚刚
Sienna完成签到,获得积分10
刚刚
1秒前
1秒前
传奇3应助丝丢皮的采纳,获得10
1秒前
2秒前
IMXIAOXIN发布了新的文献求助10
2秒前
2秒前
天天快乐应助黄小翰采纳,获得10
2秒前
如意的汽车完成签到,获得积分10
3秒前
4秒前
4秒前
yldw发布了新的文献求助20
5秒前
SHAO应助xiaohu采纳,获得10
5秒前
orixero应助勤奋幻天采纳,获得10
5秒前
5秒前
害羞外套发布了新的文献求助10
5秒前
6秒前
6秒前
jiang发布了新的文献求助10
7秒前
ssssbbbb完成签到,获得积分10
8秒前
8秒前
kttl完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
田様应助拖拖沓沓ttt采纳,获得10
9秒前
孙博发布了新的文献求助10
9秒前
9秒前
小吴同志发布了新的文献求助10
9秒前
桐桐应助Miles采纳,获得10
10秒前
多喝水完成签到,获得积分10
10秒前
Liu发布了新的文献求助10
10秒前
大模型应助苏世采纳,获得10
11秒前
田様应助十九岁的时差采纳,获得10
12秒前
ZDC发布了新的文献求助10
12秒前
13秒前
苗玉发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092