Data-Driven Insight into the Reductive Stability of Ion–Solvent Complexes in Lithium Battery Electrolytes

化学 电解质 离子 电池(电) 无机化学 溶剂 锂(药物) 溶剂萃取 物理化学 有机化学 热力学 萃取(化学) 功率(物理) 内分泌学 物理 医学 电极
作者
Yuchen Gao,Nan Yao,Xiang Chen,Legeng Yu,Rui Zhang,Qiang Zhang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (43): 23764-23770 被引量:67
标识
DOI:10.1021/jacs.3c08346
摘要

Lithium (Li) metal batteries (LMBs) are regarded as one of the most promising energy storage systems due to their ultrahigh theoretical energy density. However, the high reactivity of the Li anodes leads to the decomposition of the electrolytes, presenting a huge impediment to the practical application of LMBs. The routine trial-and-error methods are inefficient in designing highly stable solvent molecules for the Li metal anode. Herein, a data-driven approach is proposed to probe the origin of the reductive stability of solvents and accelerate the molecular design for advanced electrolytes. A large database of potential solvent molecules is first constructed using a graph theory-based algorithm and then comprehensively investigated by both first-principles calculations and machine learning (ML) methods. The reductive stability of 99% of the electrolytes decreases under the dominance of ion–solvent complexes, according to the analysis of the lowest unoccupied molecular orbital (LUMO). The LUMO energy level is related to the binding energy, bond length, and orbital ratio factors. An interpretable ML method based on Shapley additive explanations identifies the dipole moment and molecular radius as the most critical descriptors affecting the reductive stability of coordinated solvents. This work not only affords fruitful data-driven insight into the ion–solvent chemistry but also unveils the critical molecular descriptors in regulating the solvent's reductive stability, which accelerates the rational design of advanced electrolyte molecules for next-generation Li batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助jimskylxk采纳,获得10
刚刚
玫玫发布了新的文献求助10
刚刚
pluto完成签到,获得积分0
1秒前
nature预备军完成签到 ,获得积分10
1秒前
cailiaokexue完成签到,获得积分10
2秒前
小乔发布了新的文献求助10
3秒前
娜娜子完成签到 ,获得积分10
4秒前
liyanglin发布了新的文献求助20
4秒前
刘肖完成签到,获得积分10
6秒前
阿景完成签到 ,获得积分10
8秒前
1+1应助科研通管家采纳,获得10
8秒前
实验好难应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得10
8秒前
lijianguo应助科研通管家采纳,获得10
8秒前
胡萝卜应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
xsxx应助科研通管家采纳,获得10
9秒前
实验好难应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
nozero应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
zhangyidian应助科研通管家采纳,获得10
9秒前
1+1应助科研通管家采纳,获得10
9秒前
nozero应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
oooh应助科研通管家采纳,获得50
10秒前
nozero应助科研通管家采纳,获得30
10秒前
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
实验好难应助科研通管家采纳,获得10
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
nozero应助科研通管家采纳,获得30
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
迟大猫应助科研通管家采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093