With the prevalence of smart cockpits, passengers spend increasingly more time engaging with non-driving related tasks (NDRTs, e.g., in-vehicle entertainment and meetings) in vehicles. However, prolonged NDRT engagement can cause sensory conflict and result in motion sickness. Previous research found that motion sickness is highly associated with head motion, which can further be influenced by the positions of the NDRT displays. To guide the design of the smart cockpit, this paper examines the impact of four common NDRT display locations on passengers' motion sickness. A motion transfer function was utilized to translate a real-world vehicle trajectory into head motion when passengers looked at displays at different locations. Then, a 6 Degree-of-Freedom subjective vertical conflict model was adopted to evaluate the motion sickness caused by head motion. The results of this study can inform the design of in-vehicle displays and improve passenger comfort.