Self-Supervised Signed Graph Attention Network for Social Recommendation

计算机科学 利用 推荐系统 图形 社交网络(社会语言学) 人工智能 实证研究 图论 机器学习 数据科学 情报检索 社会化媒体 理论计算机科学 万维网 数学 计算机安全 组合数学 统计
作者
Qin Zhao,Gang Liu,Fuli Yang,Ru Yang,Zuliang Kou,Dong Wang
标识
DOI:10.1109/ijcnn54540.2023.10191310
摘要

In recent times, social recommendation has become a popular technique in recommender systems due to its ability to enhance the accuracy of recommendations by leveraging the social relationships among users. Despite its widespread use, the prevalent social recommendation methods are often marred by sparsity and noise issues that negatively impact their practicality. Additionally, these methods fail to consider complex user interactions, which could potentially provide additional information. To address these limitations, this paper proposes a novel self-supervised signed graph attention network (SSAN) that incorporates user attitudes in the construction of higher-order user relations. This approach integrates signed networks in the formation of reasonable higher-order local neighborhood relations and aggregates user interests in different social relations through graph convolution and balance theory. Furthermore, two self-supervised signals, derived from social theory, are designed and incorporated into the recommendation framework to better exploit the rich structural and semantic information in social relationship graphs. Empirical results on three publicly available datasets demonstrate that SSAN outperforms existing state-of-the-art social recommendation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
QLLW发布了新的文献求助10
刚刚
沉默的心情完成签到,获得积分10
1秒前
zoe关注了科研通微信公众号
1秒前
Rhenium完成签到 ,获得积分10
1秒前
1秒前
希望天下0贩的0应助cyy1226采纳,获得10
2秒前
十七发布了新的文献求助10
2秒前
王威发布了新的文献求助10
2秒前
开放蓝天应助nankebowbow采纳,获得10
2秒前
阿里巴巴完成签到,获得积分10
3秒前
青柠发布了新的文献求助10
3秒前
3秒前
tzy完成签到,获得积分10
3秒前
wanci应助爱笑的水蓝采纳,获得30
3秒前
niNe3YUE应助Sera采纳,获得10
4秒前
Akim应助heello采纳,获得10
4秒前
罐装冰块发布了新的文献求助10
4秒前
4秒前
duoduo发布了新的文献求助10
4秒前
4秒前
辰叶发布了新的文献求助10
5秒前
5秒前
SHIYU完成签到,获得积分10
6秒前
深情安青应助十二采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
zjfinal完成签到,获得积分10
7秒前
7秒前
Lucas应助lulu采纳,获得10
7秒前
研友_VZG7GZ应助屿鑫采纳,获得10
8秒前
xiaobai完成签到,获得积分10
8秒前
Hu发布了新的文献求助10
8秒前
8秒前
8秒前
萧筱尧完成签到 ,获得积分20
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414