计算机科学
利用
推荐系统
图形
社交网络(社会语言学)
人工智能
图论
社会关系图
机器学习
数据科学
情报检索
社会化媒体
理论计算机科学
万维网
数学
计算机安全
组合数学
作者
Qin Zhao,Gang Liu,Fuli Yang,Ru Yang,Zuliang Kou,Dong Wang
标识
DOI:10.1109/ijcnn54540.2023.10191310
摘要
In recent times, social recommendation has become a popular technique in recommender systems due to its ability to enhance the accuracy of recommendations by leveraging the social relationships among users. Despite its widespread use, the prevalent social recommendation methods are often marred by sparsity and noise issues that negatively impact their practicality. Additionally, these methods fail to consider complex user interactions, which could potentially provide additional information. To address these limitations, this paper proposes a novel self-supervised signed graph attention network (SSAN) that incorporates user attitudes in the construction of higher-order user relations. This approach integrates signed networks in the formation of reasonable higher-order local neighborhood relations and aggregates user interests in different social relations through graph convolution and balance theory. Furthermore, two self-supervised signals, derived from social theory, are designed and incorporated into the recommendation framework to better exploit the rich structural and semantic information in social relationship graphs. Empirical results on three publicly available datasets demonstrate that SSAN outperforms existing state-of-the-art social recommendation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI