Aircraft target type recognition technology based on deep learning and structure feature matching

索贝尔算子 人工智能 模式识别(心理学) 计算机科学 计算机视觉 特征(语言学) 主成分分析 方向(向量空间) 特征提取 计算 边缘检测 支持向量机 图像(数学) 数学 图像处理 算法 语言学 哲学 几何学
作者
Haiyang Shen,Kui Huo,Xin Qiao,Chongzhi Li
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (4): 5685-5696 被引量:3
标识
DOI:10.3233/jifs-232239
摘要

In order to solve the problems with the traditional aircraft target type recognition algorithm, such as difficulty in feature selection, weak generalization ability, slow recognition speed, and low recognition accuracy, this paper put forward a new method that could detect and recognize aircraft targets in aerial images quickly and accurately. The aircraft targets in the images were detected rapidly and located through YOLOv3-tiny, and after image denoising, shadow detection, and positioning, then we used the Sobel operator to calculate the edge gradient of the target; the image of the aircraft target was segmented by using the region growth method, and then the principal component analysis (PCA)was used to obtain the central axis of the aircraft target. The projected distance from the edge contour to the central axis was sampled at equal intervals along the direction of the central axis, and its ratio to the length of the central axis was calculated to construct the feature vector. Finally, the Spearman rank correlation method was used to match the feature vectors to realize the recognition of the aircraft type. Experiments showed that the proposed method had strong adaptability and small computation and could quickly detect and accurately recognize aircraft targets in aerial images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王自信发布了新的文献求助10
1秒前
肉包包完成签到,获得积分10
1秒前
taoze发布了新的文献求助10
1秒前
孙一峰发布了新的文献求助10
1秒前
2秒前
非我完成签到 ,获得积分10
2秒前
知昂张完成签到,获得积分20
3秒前
upupup完成签到,获得积分10
3秒前
3秒前
专一的荧完成签到,获得积分10
4秒前
afaf完成签到,获得积分10
4秒前
5秒前
无聊的亿先完成签到,获得积分20
6秒前
lapis完成签到,获得积分10
6秒前
莳柒完成签到 ,获得积分10
7秒前
7秒前
书生完成签到,获得积分10
7秒前
zhangtengteng发布了新的文献求助10
8秒前
赘婿应助小小怪将军采纳,获得150
9秒前
9秒前
10秒前
栗子栗栗子完成签到,获得积分20
12秒前
12秒前
XX完成签到 ,获得积分10
13秒前
prosperp应助Zpiao采纳,获得10
14秒前
科目三应助王自信采纳,获得10
15秒前
煜晟发布了新的文献求助10
16秒前
123keyan完成签到,获得积分10
16秒前
紫宸完成签到,获得积分10
16秒前
17秒前
细心宛凝发布了新的文献求助10
17秒前
水目完成签到,获得积分10
17秒前
阿如完成签到,获得积分20
18秒前
我是老大应助栗子栗栗子采纳,获得10
18秒前
18秒前
19秒前
快乐滑板应助秀丽绿真采纳,获得10
19秒前
谨慎傲旋完成签到,获得积分10
19秒前
afaf发布了新的文献求助10
19秒前
pfangjin完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469785
求助须知:如何正确求助?哪些是违规求助? 3062985
关于积分的说明 9080938
捐赠科研通 2753206
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698061
科研通“疑难数据库(出版商)”最低求助积分说明 698018