亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning

可解释性 校准 温室 人工神经网络 均方误差 环境科学 计算机科学 机器学习 数学 统计 生物 园艺
作者
Xiaohan Zhou,Qingzhi Liu,David Katzin,Tian Qian,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 107980-107980 被引量:2
标识
DOI:10.1016/j.compag.2023.107980
摘要

By generating high quality data without the big time investment and economic cost of real experiments, dynamic greenhouse climate and crop simulation models can support decisions on greenhouse climate control, crop management and greenhouse design. The reliability of simulation-based decisions depends on both the prediction accuracy and interpretability of simulation models. The prediction accuracy of these simulation models can be increased by: 1) improving mechanisms in process-based models; 2) calibrating process-based model parameters; 3) deriving black-box relationships from data. Considering the descending interpretability from (1) to (3), this study presents a knowledge-based data-driven modelling approach where firstly a process-based model is selected and modified based on domain knowledge, then data-driven improvement is applied including two steps: parameter value estimation by particle filter (PF) and further black-box improvement by deep neural networks (DNN). The approach was tested with an example of greenhouse climate-tomato production system modelling. Modules from GreenLight (Katzin et al., 2020) and TOMSIM (Heuvelink, 1995, Heuvelink, 1996) were selected, modified and integrated into a process-based greenhouse climate-tomato model. Validation showed that PF-calibration of five greenhouse parameters decreased the seasonal relative root mean squared error (RRMSE) of indoor air vapor pressure predictions from 40.7% of that before PF-calibration to 16.4%, while it did not decrease the RRMSE of indoor air temperature predictions. Combining the PF-calibrated model with a DNN trained on a season of data decreased the RRMSE of indoor air temperature from 15.0% without DNN to 6.7%, and decreased the RRMSE of indoor air vapor pressure to 12.6%. The knowledge-based data-driven greenhouse climate-tomato model had a relative error of 0.9% for seasonal total fresh yield, and an RRMSE of 6.6% for the cumulative yield throughout the season. If process-based model parameters were not calibrated before combining the model with DNNs, the required amount and diversity of DNN training data increased because more information needed to be learnt from data by the DNNs. Without PF-calibration, combining a DNN trained on 50 days of data with the process-based model resulted in RRMSEs of 44.8% and 31.8% for indoor air temperature and vapor pressure prediction, respectively; with PF-calibration, the RRMSEs were decreased to 13.1% and 17.9%. The proposed three-step knowledge-based data-driven approach can not only improve the model prediction accuracy, but can also help to track and interpret the improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shihuan完成签到,获得积分10
4秒前
wrl2023完成签到,获得积分10
36秒前
GingerF应助科研通管家采纳,获得50
40秒前
我是老大应助科研通管家采纳,获得10
40秒前
Allen完成签到,获得积分20
1分钟前
濮阳灵竹完成签到,获得积分10
1分钟前
英俊的铭应助红娘采纳,获得10
1分钟前
1分钟前
清脆的飞丹完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Allen发布了新的文献求助30
2分钟前
红娘发布了新的文献求助10
2分钟前
yingwang完成签到 ,获得积分10
2分钟前
2分钟前
红娘完成签到,获得积分10
2分钟前
2分钟前
飞天大南瓜完成签到,获得积分10
3分钟前
笑点低的斑马完成签到,获得积分10
3分钟前
橙子完成签到 ,获得积分10
3分钟前
铭铭铭完成签到,获得积分10
3分钟前
科研通AI6应助Allen采纳,获得10
3分钟前
共享精神应助起名太难了采纳,获得10
3分钟前
3分钟前
4分钟前
taster发布了新的文献求助10
4分钟前
4分钟前
春秋发布了新的文献求助10
4分钟前
搜集达人应助taster采纳,获得10
4分钟前
4分钟前
春秋完成签到,获得积分20
4分钟前
PAIDAXXXX完成签到,获得积分10
4分钟前
困困发布了新的文献求助10
4分钟前
困困完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助sanner采纳,获得10
5分钟前
情怀应助Alay采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365