亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning

可解释性 校准 温室 人工神经网络 均方误差 环境科学 计算机科学 机器学习 数学 统计 生物 园艺
作者
Xiaohan Zhou,Qingzhi Liu,David Katzin,Tian Qian,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 107980-107980 被引量:2
标识
DOI:10.1016/j.compag.2023.107980
摘要

By generating high quality data without the big time investment and economic cost of real experiments, dynamic greenhouse climate and crop simulation models can support decisions on greenhouse climate control, crop management and greenhouse design. The reliability of simulation-based decisions depends on both the prediction accuracy and interpretability of simulation models. The prediction accuracy of these simulation models can be increased by: 1) improving mechanisms in process-based models; 2) calibrating process-based model parameters; 3) deriving black-box relationships from data. Considering the descending interpretability from (1) to (3), this study presents a knowledge-based data-driven modelling approach where firstly a process-based model is selected and modified based on domain knowledge, then data-driven improvement is applied including two steps: parameter value estimation by particle filter (PF) and further black-box improvement by deep neural networks (DNN). The approach was tested with an example of greenhouse climate-tomato production system modelling. Modules from GreenLight (Katzin et al., 2020) and TOMSIM (Heuvelink, 1995, Heuvelink, 1996) were selected, modified and integrated into a process-based greenhouse climate-tomato model. Validation showed that PF-calibration of five greenhouse parameters decreased the seasonal relative root mean squared error (RRMSE) of indoor air vapor pressure predictions from 40.7% of that before PF-calibration to 16.4%, while it did not decrease the RRMSE of indoor air temperature predictions. Combining the PF-calibrated model with a DNN trained on a season of data decreased the RRMSE of indoor air temperature from 15.0% without DNN to 6.7%, and decreased the RRMSE of indoor air vapor pressure to 12.6%. The knowledge-based data-driven greenhouse climate-tomato model had a relative error of 0.9% for seasonal total fresh yield, and an RRMSE of 6.6% for the cumulative yield throughout the season. If process-based model parameters were not calibrated before combining the model with DNNs, the required amount and diversity of DNN training data increased because more information needed to be learnt from data by the DNNs. Without PF-calibration, combining a DNN trained on 50 days of data with the process-based model resulted in RRMSEs of 44.8% and 31.8% for indoor air temperature and vapor pressure prediction, respectively; with PF-calibration, the RRMSEs were decreased to 13.1% and 17.9%. The proposed three-step knowledge-based data-driven approach can not only improve the model prediction accuracy, but can also help to track and interpret the improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyabo发布了新的文献求助10
14秒前
tutu完成签到,获得积分10
17秒前
然463完成签到 ,获得积分10
20秒前
41秒前
量子星尘发布了新的文献求助10
48秒前
甜甜的以筠完成签到 ,获得积分10
52秒前
1206425219密完成签到,获得积分10
56秒前
57秒前
59秒前
在水一方应助xx采纳,获得10
1分钟前
活力的驳发布了新的文献求助10
1分钟前
李健应助活力的驳采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
混沌应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
潇洒的马里奥完成签到,获得积分10
1分钟前
1分钟前
1分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xx发布了新的文献求助10
2分钟前
葛力发布了新的文献求助10
2分钟前
3分钟前
3分钟前
魔笛的云宝完成签到 ,获得积分10
3分钟前
九黎完成签到 ,获得积分10
3分钟前
orixero应助xx采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
尹静涵完成签到 ,获得积分10
4分钟前
852应助开心寄松采纳,获得10
4分钟前
4分钟前
4分钟前
xx发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960063
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128577
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789645
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056