亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning

可解释性 校准 温室 人工神经网络 均方误差 环境科学 计算机科学 机器学习 数学 统计 生物 园艺
作者
Xiaohan Zhou,Qingzhi Liu,David Katzin,Tian Qian,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107980-107980 被引量:2
标识
DOI:10.1016/j.compag.2023.107980
摘要

By generating high quality data without the big time investment and economic cost of real experiments, dynamic greenhouse climate and crop simulation models can support decisions on greenhouse climate control, crop management and greenhouse design. The reliability of simulation-based decisions depends on both the prediction accuracy and interpretability of simulation models. The prediction accuracy of these simulation models can be increased by: 1) improving mechanisms in process-based models; 2) calibrating process-based model parameters; 3) deriving black-box relationships from data. Considering the descending interpretability from (1) to (3), this study presents a knowledge-based data-driven modelling approach where firstly a process-based model is selected and modified based on domain knowledge, then data-driven improvement is applied including two steps: parameter value estimation by particle filter (PF) and further black-box improvement by deep neural networks (DNN). The approach was tested with an example of greenhouse climate-tomato production system modelling. Modules from GreenLight (Katzin et al., 2020) and TOMSIM (Heuvelink, 1995, Heuvelink, 1996) were selected, modified and integrated into a process-based greenhouse climate-tomato model. Validation showed that PF-calibration of five greenhouse parameters decreased the seasonal relative root mean squared error (RRMSE) of indoor air vapor pressure predictions from 40.7% of that before PF-calibration to 16.4%, while it did not decrease the RRMSE of indoor air temperature predictions. Combining the PF-calibrated model with a DNN trained on a season of data decreased the RRMSE of indoor air temperature from 15.0% without DNN to 6.7%, and decreased the RRMSE of indoor air vapor pressure to 12.6%. The knowledge-based data-driven greenhouse climate-tomato model had a relative error of 0.9% for seasonal total fresh yield, and an RRMSE of 6.6% for the cumulative yield throughout the season. If process-based model parameters were not calibrated before combining the model with DNNs, the required amount and diversity of DNN training data increased because more information needed to be learnt from data by the DNNs. Without PF-calibration, combining a DNN trained on 50 days of data with the process-based model resulted in RRMSEs of 44.8% and 31.8% for indoor air temperature and vapor pressure prediction, respectively; with PF-calibration, the RRMSEs were decreased to 13.1% and 17.9%. The proposed three-step knowledge-based data-driven approach can not only improve the model prediction accuracy, but can also help to track and interpret the improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚心的宝马完成签到,获得积分10
16秒前
兴奋元灵完成签到 ,获得积分10
31秒前
跳跃难敌完成签到,获得积分20
51秒前
跳跃难敌发布了新的文献求助20
58秒前
1分钟前
xiubo128完成签到,获得积分10
1分钟前
完美世界应助疯疯采纳,获得10
1分钟前
傅夜山发布了新的文献求助10
1分钟前
fuueer完成签到 ,获得积分10
1分钟前
xiubo128完成签到,获得积分10
1分钟前
w33发布了新的文献求助10
1分钟前
1分钟前
疯疯发布了新的文献求助10
1分钟前
mengyuhuan完成签到 ,获得积分0
2分钟前
2分钟前
Puan应助科研通管家采纳,获得10
2分钟前
Puan应助科研通管家采纳,获得10
2分钟前
于是乎完成签到 ,获得积分10
2分钟前
FashionBoy应助gujianhua采纳,获得10
3分钟前
SciGPT应助热情紫丝采纳,获得10
3分钟前
3分钟前
gujianhua发布了新的文献求助10
3分钟前
无情的瑾瑜完成签到 ,获得积分10
3分钟前
3分钟前
Puan应助科研通管家采纳,获得10
4分钟前
caca完成签到,获得积分10
5分钟前
落后的西牛完成签到 ,获得积分10
5分钟前
SciGPT应助llllly采纳,获得10
5分钟前
5分钟前
llllly完成签到,获得积分10
5分钟前
5分钟前
llllly发布了新的文献求助10
5分钟前
凶狠的盛男完成签到 ,获得积分10
5分钟前
6分钟前
牛少辉发布了新的文献求助10
6分钟前
Puan应助科研通管家采纳,获得10
6分钟前
NNN7完成签到,获得积分10
6分钟前
烟花应助狄绮采纳,获得10
6分钟前
6分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939204
捐赠科研通 2483045
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627