Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning

可解释性 校准 温室 人工神经网络 均方误差 环境科学 计算机科学 机器学习 数学 统计 生物 园艺
作者
Xiaohan Zhou,Qingzhi Liu,David Katzin,Tian Qian,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107980-107980 被引量:2
标识
DOI:10.1016/j.compag.2023.107980
摘要

By generating high quality data without the big time investment and economic cost of real experiments, dynamic greenhouse climate and crop simulation models can support decisions on greenhouse climate control, crop management and greenhouse design. The reliability of simulation-based decisions depends on both the prediction accuracy and interpretability of simulation models. The prediction accuracy of these simulation models can be increased by: 1) improving mechanisms in process-based models; 2) calibrating process-based model parameters; 3) deriving black-box relationships from data. Considering the descending interpretability from (1) to (3), this study presents a knowledge-based data-driven modelling approach where firstly a process-based model is selected and modified based on domain knowledge, then data-driven improvement is applied including two steps: parameter value estimation by particle filter (PF) and further black-box improvement by deep neural networks (DNN). The approach was tested with an example of greenhouse climate-tomato production system modelling. Modules from GreenLight (Katzin et al., 2020) and TOMSIM (Heuvelink, 1995, Heuvelink, 1996) were selected, modified and integrated into a process-based greenhouse climate-tomato model. Validation showed that PF-calibration of five greenhouse parameters decreased the seasonal relative root mean squared error (RRMSE) of indoor air vapor pressure predictions from 40.7% of that before PF-calibration to 16.4%, while it did not decrease the RRMSE of indoor air temperature predictions. Combining the PF-calibrated model with a DNN trained on a season of data decreased the RRMSE of indoor air temperature from 15.0% without DNN to 6.7%, and decreased the RRMSE of indoor air vapor pressure to 12.6%. The knowledge-based data-driven greenhouse climate-tomato model had a relative error of 0.9% for seasonal total fresh yield, and an RRMSE of 6.6% for the cumulative yield throughout the season. If process-based model parameters were not calibrated before combining the model with DNNs, the required amount and diversity of DNN training data increased because more information needed to be learnt from data by the DNNs. Without PF-calibration, combining a DNN trained on 50 days of data with the process-based model resulted in RRMSEs of 44.8% and 31.8% for indoor air temperature and vapor pressure prediction, respectively; with PF-calibration, the RRMSEs were decreased to 13.1% and 17.9%. The proposed three-step knowledge-based data-driven approach can not only improve the model prediction accuracy, but can also help to track and interpret the improvements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp完成签到 ,获得积分10
刚刚
刚刚
无声瀑布完成签到,获得积分10
刚刚
5433完成签到 ,获得积分10
1秒前
LJH完成签到,获得积分10
1秒前
跳跃的访琴完成签到 ,获得积分10
2秒前
spc68应助JUAN采纳,获得10
2秒前
得唔闻完成签到 ,获得积分10
2秒前
2秒前
刘一完成签到 ,获得积分10
3秒前
楚之杰者完成签到,获得积分10
3秒前
浅色西完成签到,获得积分10
3秒前
腼腆的海豚完成签到,获得积分10
3秒前
dadazhou完成签到,获得积分10
3秒前
万能图书馆应助薛得豪采纳,获得10
4秒前
帅玉玉完成签到,获得积分10
4秒前
田田田完成签到,获得积分10
4秒前
南瓜小笨111111完成签到 ,获得积分10
4秒前
yuan完成签到,获得积分10
4秒前
阳炎发布了新的文献求助10
5秒前
小垃圾10号完成签到,获得积分10
5秒前
图南完成签到,获得积分10
6秒前
风趣绮菱完成签到 ,获得积分10
6秒前
7秒前
尹冰露完成签到,获得积分10
7秒前
futianyu完成签到 ,获得积分0
7秒前
8秒前
nav发布了新的文献求助10
8秒前
空山完成签到,获得积分10
9秒前
9秒前
shuai完成签到,获得积分20
9秒前
HK完成签到 ,获得积分10
9秒前
9秒前
聪慧芷巧完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
coco发布了新的文献求助10
12秒前
12秒前
12秒前
害羞天荷完成签到 ,获得积分10
13秒前
tomorrow发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715805
求助须知:如何正确求助?哪些是违规求助? 5236888
关于积分的说明 15275030
捐赠科研通 4866414
什么是DOI,文献DOI怎么找? 2612987
邀请新用户注册赠送积分活动 1563120
关于科研通互助平台的介绍 1520633