Interpretation of gender divergence in consumption places based on machine learning and equilibrium index – A case study of the main urban area of Beijing, China

北京 消费(社会学) 卷积神经网络 地理 索引(排版) 计算机科学 比例(比率) 范围(计算机科学) 人工智能 中国 地图学 社会学 万维网 程序设计语言 社会科学 考古
作者
Xiaoyi Zu,Chen Gao,Yi Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103428-103428 被引量:3
标识
DOI:10.1016/j.jag.2023.103428
摘要

The influence of gender is often overlooked in spatial studies of consumption places, and it is challenging to track consumers' perceived preferences due to measurement efficiency and scope issues. Based on machine learning techniques, this paper proposes an approach to map perceived preferences from the local to the city level, and evaluate the physical forms and distribution characteristics of gender-specific consumption places. The application steps are: First, acquire POI (point of interest) coordinates of consumption places to obtain street-view images; then, 30 respondents of each gender are invited to score the sampled images. The area proportions of four prominent visual elements in the building façade are identified by Convolutional Neural Network (CNN) and Fully Convolutional Network (FCN), after which Random Forest Model is applied to predict the preference scores of all POIs. Finally, the distribution equity of the consumption places of each gender is evaluated by Equilibrium Index. Applying this method in Beijing, we can identify the gender divergence in four aspects of form, function, scale, and administrative district, locate the area with a poor supply of consumption places, and finally provide optimisation suggestions. The method improves the efficiency and scope of measuring consumers' perceived preferences, while identifying and optimising the quality of consumption places.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助eternity136采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
明眸完成签到 ,获得积分10
1秒前
2秒前
王手发布了新的文献求助10
3秒前
3秒前
3秒前
烟花应助zzq778采纳,获得10
5秒前
5秒前
欣欣发布了新的文献求助10
5秒前
小欣6116发布了新的文献求助10
6秒前
Jiuhui发布了新的文献求助10
6秒前
御风甜咖啡完成签到,获得积分10
6秒前
uupp完成签到,获得积分10
7秒前
机智雁凡完成签到,获得积分10
8秒前
Cheung2121发布了新的文献求助30
9秒前
10秒前
12秒前
谜记完成签到,获得积分10
12秒前
共享精神应助Cheung2121采纳,获得30
12秒前
光撒盐完成签到,获得积分10
13秒前
cowboy007完成签到,获得积分10
13秒前
张振宇完成签到 ,获得积分10
14秒前
zz发布了新的文献求助10
15秒前
zzq778发布了新的文献求助10
17秒前
黄怡婷完成签到 ,获得积分10
17秒前
Daisy应助科研通管家采纳,获得10
18秒前
机智苗应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
yanmu2010应助科研通管家采纳,获得10
18秒前
kingwill应助科研通管家采纳,获得20
19秒前
银包铜应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
情怀应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029