Interpretation of gender divergence in consumption places based on machine learning and equilibrium index – A case study of the main urban area of Beijing, China

北京 消费(社会学) 卷积神经网络 地理 索引(排版) 计算机科学 比例(比率) 范围(计算机科学) 人工智能 中国 地图学 社会学 社会科学 万维网 考古 程序设计语言
作者
Xiaoyi Zu,Chen Gao,Yi Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103428-103428 被引量:3
标识
DOI:10.1016/j.jag.2023.103428
摘要

The influence of gender is often overlooked in spatial studies of consumption places, and it is challenging to track consumers' perceived preferences due to measurement efficiency and scope issues. Based on machine learning techniques, this paper proposes an approach to map perceived preferences from the local to the city level, and evaluate the physical forms and distribution characteristics of gender-specific consumption places. The application steps are: First, acquire POI (point of interest) coordinates of consumption places to obtain street-view images; then, 30 respondents of each gender are invited to score the sampled images. The area proportions of four prominent visual elements in the building façade are identified by Convolutional Neural Network (CNN) and Fully Convolutional Network (FCN), after which Random Forest Model is applied to predict the preference scores of all POIs. Finally, the distribution equity of the consumption places of each gender is evaluated by Equilibrium Index. Applying this method in Beijing, we can identify the gender divergence in four aspects of form, function, scale, and administrative district, locate the area with a poor supply of consumption places, and finally provide optimisation suggestions. The method improves the efficiency and scope of measuring consumers' perceived preferences, while identifying and optimising the quality of consumption places.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不吃香菜发布了新的文献求助10
1秒前
考博圣体完成签到,获得积分10
2秒前
白云苍狗发布了新的文献求助10
4秒前
笨笨的元风完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
凌奕添完成签到 ,获得积分10
9秒前
考博圣体发布了新的文献求助10
9秒前
10秒前
pyb完成签到 ,获得积分10
11秒前
11秒前
Jasper应助Zenghaw采纳,获得10
11秒前
酷波er应助哎哟可爱采纳,获得10
13秒前
13秒前
13秒前
生动依凝发布了新的文献求助10
13秒前
13秒前
善学以致用应助追寻电脑采纳,获得10
13秒前
14秒前
小余同学发布了新的文献求助10
15秒前
马小燕完成签到,获得积分10
15秒前
礼礼完成签到 ,获得积分10
15秒前
mm发布了新的文献求助10
17秒前
情怀应助怡然静竹采纳,获得10
17秒前
章丘吴彦祖完成签到,获得积分10
18秒前
hh发布了新的文献求助10
18秒前
lyc8211发布了新的文献求助10
18秒前
wer发布了新的文献求助10
18秒前
xiaofulan发布了新的文献求助10
19秒前
科研通AI2S应助深情的大白采纳,获得30
19秒前
19秒前
qcl完成签到,获得积分10
20秒前
xiaolei001应助呜呼呼采纳,获得10
21秒前
浮游应助五六七采纳,获得10
21秒前
FashionBoy应助沧海一粟采纳,获得10
21秒前
乐乐应助留胡子的松采纳,获得10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548