SIFIAE: An adaptive emotion recognition model with EEG feature-label inconsistency consideration

脑电图 计算机科学 情绪识别 特征(语言学) 心情 心理学 模式识别(心理学) 人工智能 语音识别 认知心理学 社会心理学 语言学 精神科 哲学
作者
Yikai Zhang,Yong Peng,Junhua Li,Wanzeng Kong
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:395: 109909-109909 被引量:2
标识
DOI:10.1016/j.jneumeth.2023.109909
摘要

A common but easily overlooked affective overlap problem has not been received enough attention in electroencephalogram (EEG)-based emotion recognition research. In real life, affective overlap refers to the current emotional state of human being is sometimes influenced easily by his/her historical mood. In stimulus-evoked EEG collection experiment, due to the short rest interval in consecutive trials, the inner mechanisms of neural responses make subjects cannot switch their emotion state easily and quickly, which might lead to the affective overlap. For example, we might be still in sad state to some extent even if we are watching a comedy because we just saw a tragedy before. In pattern recognition, affective overlap usually means that there exists the feature-label inconsistency in EEG data. To alleviate the impact of inconsistent EEG data, we introduce a variable to adaptively explore the sample inconsistency in emotion recognition model development. Then, we propose a semi-supervised emotion recognition model for joint sample inconsistency and feature importance exploration (SIFIAE). Accordingly, an efficient optimization method to SIFIAE model is proposed. Extensive experiments on the SEED-V dataset demonstrate the effectiveness of SIFIAE. Specifically, SIFIAE achieves 69.10%, 67.01%, 71.50%, 73.26%, 72.07% and 71.35% average accuracies in six cross-session emotion recognition tasks. The results illustrated that the sample weights have a rising trend in the beginning of most trials, which coincides with the affective overlap hypothesis. The feature importance factor indicated the critical bands and channels are more obvious compared with some models without considering EEG feature-label inconsistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助ahxb采纳,获得10
刚刚
kaerless发布了新的文献求助10
1秒前
认真河马发布了新的文献求助10
1秒前
MRJJJJ完成签到,获得积分10
6秒前
jenningseastera应助cookie采纳,获得10
8秒前
8秒前
昏睡的蟠桃应助pophoo采纳,获得30
9秒前
852应助单薄电源采纳,获得10
11秒前
yueya发布了新的文献求助20
13秒前
Dr.wang完成签到,获得积分10
15秒前
bububusbu完成签到,获得积分10
16秒前
CCC完成签到,获得积分10
16秒前
18秒前
科研通AI2S应助华小实采纳,获得10
18秒前
荼蘼完成签到,获得积分10
21秒前
大模型应助笨笨醉薇采纳,获得10
21秒前
三眼乌鸦发布了新的文献求助10
22秒前
科研通AI5应助萨尔莫斯采纳,获得10
22秒前
赘婿应助xuan采纳,获得30
23秒前
24秒前
学fei了吗完成签到,获得积分10
25秒前
积极的若山完成签到,获得积分10
26秒前
昏睡的蟠桃应助yueya采纳,获得50
27秒前
冷傲的小土豆完成签到,获得积分10
27秒前
27秒前
白一发布了新的文献求助10
28秒前
树池完成签到,获得积分10
30秒前
vividashen发布了新的文献求助10
31秒前
33秒前
猩心发布了新的文献求助30
33秒前
yuli完成签到 ,获得积分10
34秒前
yueya完成签到,获得积分10
35秒前
Ava应助白一采纳,获得10
36秒前
kyt1273162712发布了新的文献求助10
36秒前
ca0ca0完成签到,获得积分10
37秒前
大忽悠家完成签到,获得积分10
38秒前
39秒前
Di完成签到,获得积分10
40秒前
Alexbirchurros完成签到 ,获得积分10
41秒前
Yh完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759318
求助须知:如何正确求助?哪些是违规求助? 3302430
关于积分的说明 10122259
捐赠科研通 3016793
什么是DOI,文献DOI怎么找? 1656619
邀请新用户注册赠送积分活动 790590
科研通“疑难数据库(出版商)”最低求助积分说明 753960