Room‐Temperature‐Processable Highly Reliable Resistive Switching Memory with Reconfigurability for Neuromorphic Computing and Ultrasonic Tissue Classification

可重构性 神经形态工程学 材料科学 记忆电阻器 稳健性(进化) 可靠性(半导体) 过程(计算) 电子工程 计算机科学 人工智能 人工神经网络 工程类 电信 基因 操作系统 物理 量子力学 功率(物理) 化学 生物化学
作者
Dohyung Kim,Hyeonsu Bang,Hyoung Won Baac,Jong‐Min Lee,Phuoc Loc Truong,Bum Ho Jeong,Tamilselvan Appadurai,Kyu Kwan Park,Donghyeok Heo,Vu Binh Nam,Hocheon Yoo,Kyeounghak Kim,Daeho Lee,Jong Hwan Ko,Hui Joon Park
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (14) 被引量:14
标识
DOI:10.1002/adfm.202213064
摘要

Abstract Reversible metal‐filamentary mechanism has been widely investigated to design an analog resistive switching memory (RSM) for neuromorphic hardware‐implementation. However, uncontrollable filament‐formation, inducing its reliability issues, has been a fundamental challenge. Here, an analog RSM with 3D ion transport channels that can provide unprecedentedly high reliability and robustness is demonstrated. This architecture is realized by a laser‐assisted photo‐thermochemical process, compatible with the back‐end‐of‐line process and even applicable to a flexible format. These superior characteristics also lead to the proposal of a practical adaptive learning rule for hardware neural networks that can significantly simplify the voltage pulse application methodology even with high computing accuracy. A neural network, which can perform the biological tissue classification task using the ultrasound signals, is designed, and the simulation results confirm that this practical adaptive learning rule is efficient enough to classify these weak and complicated signals with high accuracy (97%). Furthermore, the proposed RSM can work as a diffusive‐memristor at the opposite voltage polarity, exhibiting extremely stable threshold switching characteristics. In this mode, several crucial operations in biological nervous systems, such as Ca 2+ dynamics and nonlinear integrate‐and‐fire functions of neurons, are successfully emulated. This reconfigurability is also exceedingly beneficial for decreasing the complexity of systems—requiring both drift‐ and diffusive‐memristors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助whs采纳,获得10
1秒前
1秒前
tcc完成签到 ,获得积分10
3秒前
boshazhiwu完成签到 ,获得积分10
3秒前
9秒前
9秒前
半糖芝士完成签到,获得积分20
11秒前
11秒前
whs完成签到,获得积分10
11秒前
松江发布了新的文献求助10
14秒前
15秒前
小帅发布了新的文献求助30
19秒前
领导范儿应助Michelle采纳,获得10
21秒前
22秒前
平淡扬完成签到 ,获得积分10
27秒前
DYK发布了新的文献求助10
29秒前
Dr_Ho发布了新的文献求助10
32秒前
Toby完成签到 ,获得积分10
33秒前
细心以菱完成签到 ,获得积分10
35秒前
松江完成签到,获得积分10
37秒前
Candice应助浅香千雪采纳,获得10
37秒前
39秒前
安静幻枫应助DenDan采纳,获得50
41秒前
46秒前
西陆发布了新的文献求助10
49秒前
天天快乐应助Cheshire采纳,获得10
49秒前
50秒前
gliterr发布了新的文献求助10
51秒前
wanci应助科研通管家采纳,获得10
51秒前
丘比特应助武雨寒采纳,获得10
52秒前
rita完成签到,获得积分10
53秒前
Rewi_Zhang完成签到,获得积分10
56秒前
翁梦山完成签到,获得积分10
57秒前
Hello应助无情曼易采纳,获得10
58秒前
翁梦山发布了新的文献求助1000
1分钟前
温柔若颜完成签到,获得积分10
1分钟前
谷粱初之发布了新的文献求助10
1分钟前
呜呼啦呼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
脑血管病 300
Teaching Essential Units of Language 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372542
求助须知:如何正确求助?哪些是违规求助? 2990253
关于积分的说明 8739494
捐赠科研通 2673682
什么是DOI,文献DOI怎么找? 1464634
科研通“疑难数据库(出版商)”最低求助积分说明 677621
邀请新用户注册赠送积分活动 669038