A Novel Deep Learning Model for Medical Report Generation by Inter-Intra Information Calibration

计算机科学 工作量 过程(计算) 医疗信息 校准 信息和通信技术 数据挖掘 人工智能 情报检索 万维网 数学 统计 操作系统
作者
Junsan Zhang,Xiuxuan Shen,Shaohua Wan,Sotirios K. Goudos,Jie Wu,Ming Ming Cheng,Weishan Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5110-5121 被引量:8
标识
DOI:10.1109/jbhi.2023.3236661
摘要

Automatic generation of medical reports can provide diagnostic assistance to doctors and reduce their workload. To improve the quality of the generated medical reports, injecting auxiliary information through knowledge graphs or templates into the model is widely adopted in previous methods. However, they suffer from two problems: 1) The injected external information is limited in amount and difficult to adequately meet the information needs of medical report generation in content. 2) The injected external information increases the complexity of model and is hard to be reasonably integrated into the generation process of medical reports. Therefore, we propose an Information Calibrated Transformer (ICT) to address the above issues. First, we design a Precursor-information Enhancement Module (PEM), which can effectively extract numerous inter-intra report features from the datasets as the auxiliary information without external injection. And the auxiliary information can be dynamically updated with the training process. Secondly, a combination mode, which consists of PEM and our proposed Information Calibration Attention Module (ICA), is designed and embedded into ICT. In this method, the auxiliary information extracted from PEM is flexibly injected into ICT and the increment of model parameters is small. The comprehensive evaluations validate that the ICT is not only superior to previous methods in the X-Ray datasets, IU-X-Ray and MIMIC-CXR, but also successfully be extended to a CT COVID-19 dataset COV-CTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善良过客完成签到,获得积分10
刚刚
贪玩的宛凝完成签到,获得积分10
刚刚
1秒前
2秒前
倔强的大萝卜完成签到,获得积分0
2秒前
3秒前
3秒前
3秒前
4秒前
Ankangg完成签到,获得积分10
4秒前
啊啊啊完成签到 ,获得积分10
4秒前
aaaabc发布了新的文献求助20
4秒前
摆烂王子完成签到,获得积分10
5秒前
小离完成签到,获得积分10
5秒前
大个应助哲999采纳,获得10
6秒前
萌道发布了新的文献求助10
6秒前
6秒前
6秒前
yrea完成签到,获得积分10
6秒前
7秒前
JamesPei应助白华苍松采纳,获得10
8秒前
wangn发布了新的文献求助10
8秒前
挽歌发布了新的文献求助10
8秒前
8秒前
Zhang发布了新的文献求助10
8秒前
Owen应助jogrgr采纳,获得10
8秒前
wjw关闭了wjw文献求助
8秒前
9秒前
9秒前
9秒前
9秒前
Ava应助侦察兵采纳,获得10
10秒前
10秒前
rookie_b0发布了新的文献求助10
10秒前
邓代容完成签到 ,获得积分10
11秒前
可爱的函函应助南逸然采纳,获得10
11秒前
HiK完成签到,获得积分10
11秒前
gaos发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759