A Novel Deep Learning Model for Medical Report Generation by Inter-Intra Information Calibration

计算机科学 工作量 过程(计算) 医疗信息 校准 信息和通信技术 数据挖掘 人工智能 情报检索 万维网 数学 统计 操作系统
作者
Junsan Zhang,Xiuxuan Shen,Shaohua Wan,Sotirios K. Goudos,Jie Wu,Ming Ming Cheng,Weishan Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5110-5121 被引量:8
标识
DOI:10.1109/jbhi.2023.3236661
摘要

Automatic generation of medical reports can provide diagnostic assistance to doctors and reduce their workload. To improve the quality of the generated medical reports, injecting auxiliary information through knowledge graphs or templates into the model is widely adopted in previous methods. However, they suffer from two problems: 1) The injected external information is limited in amount and difficult to adequately meet the information needs of medical report generation in content. 2) The injected external information increases the complexity of model and is hard to be reasonably integrated into the generation process of medical reports. Therefore, we propose an Information Calibrated Transformer (ICT) to address the above issues. First, we design a Precursor-information Enhancement Module (PEM), which can effectively extract numerous inter-intra report features from the datasets as the auxiliary information without external injection. And the auxiliary information can be dynamically updated with the training process. Secondly, a combination mode, which consists of PEM and our proposed Information Calibration Attention Module (ICA), is designed and embedded into ICT. In this method, the auxiliary information extracted from PEM is flexibly injected into ICT and the increment of model parameters is small. The comprehensive evaluations validate that the ICT is not only superior to previous methods in the X-Ray datasets, IU-X-Ray and MIMIC-CXR, but also successfully be extended to a CT COVID-19 dataset COV-CTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁sir完成签到,获得积分20
1秒前
Akim应助颜颜采纳,获得10
1秒前
9420发布了新的文献求助10
1秒前
丘比特应助张张采纳,获得30
1秒前
发生了什么完成签到 ,获得积分10
2秒前
ybigwhite应助默默诗筠采纳,获得10
3秒前
淡定的一手完成签到,获得积分10
4秒前
阿树不是树完成签到,获得积分10
4秒前
悦耳溪流发布了新的文献求助10
4秒前
5秒前
453452542完成签到,获得积分10
6秒前
6秒前
7秒前
张张完成签到,获得积分10
8秒前
dtcao完成签到,获得积分20
8秒前
科研通AI6应助洁净的画板采纳,获得10
9秒前
张张园完成签到,获得积分10
9秒前
10秒前
11秒前
乐乐应助wang1343259150采纳,获得10
11秒前
石可以发布了新的文献求助10
11秒前
12秒前
许许发布了新的文献求助10
12秒前
lwxlvji完成签到,获得积分10
12秒前
小松鼠完成签到 ,获得积分10
13秒前
漠池发布了新的文献求助10
13秒前
光轮2000发布了新的文献求助10
14秒前
呜呜呜发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
传奇3应助甜甜的小龙人采纳,获得30
16秒前
量子星尘发布了新的文献求助10
17秒前
Mininine完成签到,获得积分10
19秒前
Go1dstep发布了新的文献求助10
21秒前
22秒前
无敌霸王花应助吴珺慈采纳,获得20
22秒前
23秒前
漠池完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123274
求助须知:如何正确求助?哪些是违规求助? 4327783
关于积分的说明 13485510
捐赠科研通 4162042
什么是DOI,文献DOI怎么找? 2281160
邀请新用户注册赠送积分活动 1282619
关于科研通互助平台的介绍 1221690