A Novel Deep Learning Model for Medical Report Generation by Inter-Intra Information Calibration

计算机科学 工作量 过程(计算) 医疗信息 校准 信息和通信技术 数据挖掘 人工智能 情报检索 万维网 数学 统计 操作系统
作者
Junsan Zhang,Xiuxuan Shen,Shaohua Wan,Sotirios K. Goudos,Jie Wu,Ming Ming Cheng,Weishan Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5110-5121 被引量:8
标识
DOI:10.1109/jbhi.2023.3236661
摘要

Automatic generation of medical reports can provide diagnostic assistance to doctors and reduce their workload. To improve the quality of the generated medical reports, injecting auxiliary information through knowledge graphs or templates into the model is widely adopted in previous methods. However, they suffer from two problems: 1) The injected external information is limited in amount and difficult to adequately meet the information needs of medical report generation in content. 2) The injected external information increases the complexity of model and is hard to be reasonably integrated into the generation process of medical reports. Therefore, we propose an Information Calibrated Transformer (ICT) to address the above issues. First, we design a Precursor-information Enhancement Module (PEM), which can effectively extract numerous inter-intra report features from the datasets as the auxiliary information without external injection. And the auxiliary information can be dynamically updated with the training process. Secondly, a combination mode, which consists of PEM and our proposed Information Calibration Attention Module (ICA), is designed and embedded into ICT. In this method, the auxiliary information extracted from PEM is flexibly injected into ICT and the increment of model parameters is small. The comprehensive evaluations validate that the ICT is not only superior to previous methods in the X-Ray datasets, IU-X-Ray and MIMIC-CXR, but also successfully be extended to a CT COVID-19 dataset COV-CTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的电话完成签到,获得积分10
刚刚
舒服的井完成签到,获得积分10
1秒前
自由青柏发布了新的文献求助10
1秒前
yingtiao发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
5秒前
6秒前
lmh完成签到,获得积分20
6秒前
怕孤单的安莲完成签到,获得积分10
7秒前
科目三应助yingtiao采纳,获得20
8秒前
吱哦周完成签到,获得积分10
9秒前
jorong完成签到,获得积分10
9秒前
for发布了新的文献求助10
10秒前
欣慰的乐安完成签到,获得积分10
10秒前
Linda完成签到,获得积分10
12秒前
得偿所愿发布了新的文献求助10
12秒前
15秒前
冷静的小土豆完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
蒋时晏应助Billy采纳,获得30
17秒前
17秒前
你好这位仁兄完成签到,获得积分10
18秒前
19秒前
19秒前
sci发布了新的文献求助10
20秒前
九月完成签到,获得积分10
20秒前
David应助asd采纳,获得10
21秒前
Bao发布了新的文献求助10
21秒前
21秒前
zzj完成签到 ,获得积分10
22秒前
22秒前
机器猫发布了新的文献求助10
22秒前
22秒前
丢丢发布了新的文献求助10
22秒前
23秒前
丁小丁完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231