Clinical knowledge embedded method based on multi-task learning for thyroid nodule classification with ultrasound images

计算机科学 人工智能 加权 机器学习 甲状腺结节 试验装置 任务(项目管理) 医学 放射科 恶性肿瘤 病理 经济 管理
作者
Zixiong Gao,Yufan Chen,Pengtao Sun,Hongmei Liu,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (4): 045018-045018 被引量:6
标识
DOI:10.1088/1361-6560/acb481
摘要

Objective. Thyroid nodules are common glandular abnormality that need to be diagnosed as benign or malignant to determine further treatments. Clinically, ultrasonography is the main diagnostic method, but it is highly subjective with severe variability. Recently, many deep-learning-based methods have been proposed to alleviate subjectivity and achieve good results yet, these methods often neglect important guidance from clinical knowledge. Our objective is to utilize such guidance for accurate and reliable thyroid nodule classification.Approach. In this study, a multi-task learning model embedded with clinical knowledge of ACR Thyroid Imaging, Reporting and Data System guideline is proposed. The clinical features defined in the guideline have strong correlations with malignancy and they were modeled as tasks alongside the pathological type. Multi-task learning was utilized to exploit the correlations to improve diagnostic performance. To alleviate the impact of noisy labels on clinical features, a loss-weighting strategy was proposed. Five-fold cross-validation was applied to an internal training set of size 4989, and an external test set of size 243 was used for evaluation.Main results. The proposed multi-task learning model achieved an average AUC of 0.901 and an ensemble AUC of 0.917 on the test set, which significantly outperformed the single-task baseline models.Significance. The results indicated that multi-task learning of clinical features can effectively classify thyroid nodules and reveal the possibility of using clinical indicators as auxiliary tasks to improve performance when diagnosing other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
LM879发布了新的文献求助10
2秒前
wanci应助张土豆采纳,获得10
7秒前
Mr.Ren发布了新的文献求助10
7秒前
9秒前
9秒前
chenhy完成签到,获得积分10
10秒前
JamesPei应助Islay50ppm采纳,获得10
11秒前
7U发布了新的文献求助10
13秒前
呆萌的依霜完成签到,获得积分20
14秒前
15秒前
筝zheng发布了新的文献求助10
16秒前
昏睡的半鬼完成签到 ,获得积分10
18秒前
20秒前
21秒前
科目三应助害羞的纸鹤采纳,获得10
21秒前
体贴的冥王星完成签到,获得积分20
23秒前
SAODEN完成签到,获得积分10
23秒前
24秒前
华半仙发布了新的文献求助10
25秒前
斯文静曼发布了新的文献求助10
26秒前
昵称发布了新的文献求助10
26秒前
章鱼完成签到,获得积分10
27秒前
Cassiel发布了新的文献求助30
27秒前
zz完成签到,获得积分10
29秒前
8R60d8应助侧耳倾听采纳,获得10
29秒前
30秒前
科研通AI2S应助ohh采纳,获得10
30秒前
酷波er应助Max108采纳,获得10
31秒前
31秒前
niuma应助昵称采纳,获得10
32秒前
李健的小迷弟应助green采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得10
33秒前
桐桐应助皮皮猫采纳,获得10
33秒前
iNk应助科研通管家采纳,获得20
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495