Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer

基因组 生物 DNA 癌症 遗传学 片段(逻辑) 基因组不稳定性 分子生物学 基因组DNA 人类基因组 计算生物学 基因 DNA损伤 算法 计算机科学
作者
Karan K. Budhraja,Bradon R. McDonald,Michelle D. Stephens,Tania Contente‐Cuomo,Havell Markus,Maria Farooq,Patricia Filippsen Favaro,Sydney Connor,Sara A. Byron,Jan B. Egan,Brenda Ernst,Timothy K. McDaniel,Aleksandar Sekulić,Nhan L. Tran,Michael D. Prados,Mitesh J. Borad,Michael E. Berens,Barbara A. Pockaj,Patricia LoRusso,Alan H. Bryce
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:15 (678) 被引量:34
标识
DOI:10.1126/scitranslmed.abm6863
摘要

Genome-wide fragmentation patterns in cell-free DNA (cfDNA) in plasma are strongly influenced by cellular origin due to variation in chromatin accessibility across cell types. Such differences between healthy and cancer cells provide the opportunity for development of novel cancer diagnostics. Here, we investigated whether analysis of cfDNA fragment end positions and their surrounding DNA sequences reveals the presence of tumor-derived DNA in blood. We performed genome-wide analysis of cfDNA from 521 samples and analyzed sequencing data from an additional 2147 samples, including healthy individuals and patients with 11 different cancer types. We developed a metric based on genome-wide differences in fragment positioning, weighted by fragment length and GC content [information-weighted fraction of aberrant fragments (iwFAF)]. We observed that iwFAF strongly correlated with tumor fraction, was higher for DNA fragments carrying somatic mutations, and was higher within genomic regions affected by copy number amplifications. We also calculated sample-level means of nucleotide frequencies observed at genomic positions spanning fragment ends. Using a combination of iwFAF and nine nucleotide frequencies from three positions surrounding fragment ends, we developed a machine learning model to differentiate healthy individuals from patients with cancer. We observed an area under the receiver operative characteristic curve (AUC) of 0.91 for detection of cancer at any stage and an AUC of 0.87 for detection of stage I cancer. Our findings remained robust with as few as 1 million fragments analyzed per sample, demonstrating that analysis of fragment ends can become a cost-effective and accessible approach for cancer detection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨桃发布了新的文献求助10
1秒前
5秒前
科研通AI5应助博修采纳,获得10
5秒前
1s完成签到,获得积分20
6秒前
茯苓发布了新的文献求助10
7秒前
爆米花应助如意2023采纳,获得10
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
柯一一应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得30
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
bbb应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
鹿阿布发布了新的文献求助10
9秒前
香蕉觅云应助科研通管家采纳,获得30
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
佳佳应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
linmo发布了新的文献求助10
12秒前
louise完成签到,获得积分10
13秒前
14秒前
yxy303256651完成签到,获得积分10
15秒前
VitoLi发布了新的文献求助10
15秒前
善学以致用应助多巴不胺采纳,获得10
15秒前
owoow发布了新的文献求助10
15秒前
16秒前
Aura完成签到,获得积分10
16秒前
Abc123关注了科研通微信公众号
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578