NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality

方向性 计算机科学 算法 人工智能 机器学习 生物 遗传学
作者
Iori Azuma,Tadahaya Mizuno,Hiroyuki Kusuhara
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 474-483 被引量:8
标识
DOI:10.1021/acs.jcim.2c01210
摘要

Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (−1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轻松鸿涛完成签到,获得积分10
刚刚
搜集达人应助Love发呆采纳,获得10
2秒前
doclarrin完成签到 ,获得积分10
2秒前
3秒前
超级无敌万能小金毛完成签到,获得积分10
3秒前
小许完成签到,获得积分20
3秒前
啊我吗发布了新的文献求助20
3秒前
3秒前
mtdxby发布了新的文献求助10
3秒前
4秒前
大肥猫发布了新的文献求助10
4秒前
木子弓长发布了新的文献求助10
5秒前
敏感尔珍完成签到,获得积分10
5秒前
共享精神应助空曲采纳,获得10
5秒前
8秒前
jingdaitianxiang完成签到 ,获得积分10
8秒前
8秒前
zhzhzh完成签到,获得积分10
8秒前
9秒前
敏感尔珍发布了新的文献求助10
9秒前
匹诺曹完成签到,获得积分10
9秒前
路由完成签到,获得积分10
9秒前
10秒前
兰静发布了新的文献求助10
12秒前
大肥猫完成签到,获得积分10
12秒前
子车一手完成签到,获得积分10
12秒前
12秒前
12秒前
zhzhzh发布了新的文献求助30
12秒前
13秒前
14秒前
wiwin发布了新的文献求助10
15秒前
我是老大应助专注背包采纳,获得10
15秒前
ccc完成签到,获得积分10
16秒前
隐形曼青应助尤曼云采纳,获得10
17秒前
俊逸翠丝发布了新的文献求助10
17秒前
Hazel完成签到 ,获得积分10
17秒前
长心完成签到,获得积分10
17秒前
18秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587