NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality

方向性 计算机科学 算法 人工智能 机器学习 生物 遗传学
作者
Iori Azuma,Tadahaya Mizuno,Hiroyuki Kusuhara
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 474-483 被引量:9
标识
DOI:10.1021/acs.jcim.2c01210
摘要

Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (−1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yls采纳,获得10
刚刚
1秒前
火星上惜蕊完成签到,获得积分10
1秒前
科研不了一点完成签到,获得积分10
2秒前
2秒前
啊呜完成签到,获得积分20
3秒前
3秒前
林木木发布了新的文献求助30
3秒前
5秒前
5秒前
5秒前
啊呜发布了新的文献求助10
5秒前
英俊的铭应助虚心的嫣然采纳,获得10
6秒前
刘晶发布了新的文献求助10
6秒前
wang完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
吴一凡完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
十一发布了新的文献求助10
10秒前
123567发布了新的文献求助10
10秒前
10秒前
暮寻屿苗发布了新的文献求助10
10秒前
11秒前
浮游应助WUWEI采纳,获得10
11秒前
椿·完成签到,获得积分10
11秒前
六六哈关注了科研通微信公众号
12秒前
小于发布了新的文献求助10
12秒前
大个应助wawaeryu采纳,获得10
13秒前
一颗药顽发布了新的文献求助10
13秒前
kk发布了新的文献求助10
13秒前
小马甲应助孤独千愁采纳,获得10
15秒前
浪子发布了新的文献求助10
15秒前
Xie完成签到,获得积分10
15秒前
haonna发布了新的文献求助10
16秒前
orixero应助Amor采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907817
求助须知:如何正确求助?哪些是违规求助? 4184682
关于积分的说明 12995045
捐赠科研通 3951176
什么是DOI,文献DOI怎么找? 2166855
邀请新用户注册赠送积分活动 1185434
关于科研通互助平台的介绍 1091895