NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality

方向性 计算机科学 算法 人工智能 机器学习 生物 遗传学
作者
Iori Azuma,Tadahaya Mizuno,Hiroyuki Kusuhara
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 474-483 被引量:8
标识
DOI:10.1021/acs.jcim.2c01210
摘要

Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (−1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那一片海完成签到,获得积分10
1秒前
阿a完成签到,获得积分10
1秒前
CodeCraft应助不安的小刺猬采纳,获得10
2秒前
安生安生完成签到 ,获得积分20
3秒前
筱晓完成签到,获得积分10
3秒前
海星完成签到,获得积分10
4秒前
4秒前
FTX完成签到 ,获得积分10
5秒前
筱晓发布了新的文献求助10
7秒前
sht应助蓝莓小蛋糕采纳,获得10
8秒前
8秒前
Tangerine发布了新的文献求助10
9秒前
汉堡包应助MaRin采纳,获得10
12秒前
柚子哈密瓜完成签到,获得积分10
12秒前
田様应助yydtly采纳,获得10
12秒前
13秒前
Yen发布了新的文献求助10
14秒前
15秒前
行走完成签到,获得积分10
16秒前
17秒前
19秒前
Yen完成签到,获得积分10
20秒前
龙腾岁月完成签到,获得积分10
21秒前
爆米花应助WN采纳,获得10
22秒前
moonbeam发布了新的文献求助10
22秒前
哒哒猪完成签到,获得积分10
24秒前
豪厉害完成签到,获得积分10
24秒前
机灵飞珍完成签到 ,获得积分10
25秒前
马66发布了新的文献求助10
25秒前
酷波er应助shinn采纳,获得10
25秒前
25秒前
yydtly完成签到,获得积分10
26秒前
田様应助任侠传采纳,获得10
27秒前
Jasper应助zzkka采纳,获得10
28秒前
哒哒猪发布了新的文献求助10
30秒前
31秒前
32秒前
33秒前
浨归完成签到,获得积分10
33秒前
不厌发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450