Community hiding using a graph autoencoder

计算机科学 自编码 过度拟合 群落结构 邻接矩阵 图形 数据挖掘 人工智能 机器学习 概率逻辑 理论计算机科学 人工神经网络 数学 组合数学
作者
Dong Liu,Zhengchao Chang,Guoliang Yang,Enhong Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:253: 109495-109495 被引量:7
标识
DOI:10.1016/j.knosys.2022.109495
摘要

Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individuals and groups. Therefore, community hiding has received increasingly more attention in recent years. However, the network generation mechanism has not been considered in previous studies on community hiding. Generation models can reflect the generation process of the network and show the strength of the connection between nodes. To this end, we propose a new graph autoencoder for the community hiding algorithm, namely, GCH, which not only hides the community structure but also embodies the generation mechanism of the network. It uses the rules of the generation process from underfitting to overfitting in the community network to select the connections that have the greatest impact on the community structure for rewiring. After analyzing the essence of community detection algorithms and graph neural networks, an improved graph autoencoder is used to reconstruct the probabilistic adjacency matrix; and under the constraint of an ”invisible perturbation” of the network structure, the existing mainstream community detection algorithm is attacked, which greatly reduces the accuracy of community detection results. For the verification of model effectiveness, two widely used indicators NMI and AE are used to compare the performance of our attack on the community detection algorithm with other baselines under different dimension settings. Compared with several baseline algorithms, extensive experimental results are obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzk发布了新的文献求助10
1秒前
x1nger完成签到,获得积分10
3秒前
huangjs发布了新的文献求助10
4秒前
4秒前
x1nger发布了新的文献求助10
5秒前
儒雅的焦完成签到,获得积分10
6秒前
xsx发布了新的文献求助10
7秒前
FashionBoy应助单纯的思松采纳,获得10
8秒前
佳小佳完成签到,获得积分10
9秒前
THINKG完成签到 ,获得积分10
9秒前
keysoz完成签到,获得积分10
12秒前
12秒前
祖优秀完成签到 ,获得积分10
12秒前
佳小佳发布了新的文献求助30
13秒前
14秒前
小马甲应助xia采纳,获得10
15秒前
猷洲发布了新的文献求助30
17秒前
天天小女孩完成签到 ,获得积分10
17秒前
18秒前
neil_match发布了新的文献求助10
19秒前
Sg发布了新的文献求助10
21秒前
lee完成签到,获得积分10
21秒前
arsenal发布了新的文献求助10
22秒前
1609855535完成签到,获得积分10
22秒前
我要读博士完成签到 ,获得积分10
25秒前
Singularity应助KingslayerCris采纳,获得10
28秒前
29秒前
很酷的妞子完成签到 ,获得积分10
30秒前
坦率店员完成签到,获得积分10
31秒前
32秒前
顾矜应助huangjs采纳,获得10
32秒前
32秒前
32秒前
充电宝应助白蓝红采纳,获得10
33秒前
棉花糖吖吖吖完成签到 ,获得积分10
33秒前
lyn完成签到,获得积分10
34秒前
华仔应助个性毛衣采纳,获得10
35秒前
嘿嘿发布了新的文献求助10
36秒前
ASH完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312233
求助须知:如何正确求助?哪些是违规求助? 2944813
关于积分的说明 8521583
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432912
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650131