Deciphering the Folding Mechanism of Proteins G and L and Their Mutants

折叠(DSP实现) 蛋白质折叠 化学 马尔可夫链 计算生物学 可解释性 下坡褶皱 原籍国 生物系统 功率因数值分析 计算机科学 结晶学 人工智能 机器学习 生物 生物化学 电气工程 工程类
作者
Liwei Chang,Alberto Perez
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (32): 14668-14677 被引量:6
标识
DOI:10.1021/jacs.2c04488
摘要

Much of our understanding of folding mechanisms comes from interpretations of experimental ϕ and ψ value analysis, relating the differences in stability of the transition state ensemble (TSE) and folded state. We introduce a unified approach combining simulations and Bayesian inference to provide atomistic detail for the folding mechanism of proteins G and L and their mutants. Proteins G and L fold to similar topologies despite low sequence similarity, but differ in their folding pathways. A fast folding redesign of protein G, NuG2, switches folding pathways and folds through a similar pathway with protein L. A redesign of protein L also leads to faster folding, respecting the original folding pathway. Our Bayesian inference approach starts from the same prior on all systems and correctly identifies the folding mechanism for each of the four proteins, a success of the force field and sampling strategy. The approach is computationally efficient and correctly identifies the TSE and intermediate structures along the folding pathway in good agreement with experiments. We complement our findings by using two orthogonal approaches that differ in computational cost and interpretability. Adaptive sampling MD combined with the Markov state model provides a kinetic model that confirms the more complex folding mechanism of protein G and its mutant. Finally, a novel fragment decomposition approach using AlphaFold identifies preferences for secondary structure element combinations that follow the order of events observed in the folding pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
sutharsons应助科研通管家采纳,获得30
1秒前
归海含烟完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
shire应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
匹诺曹发布了新的文献求助10
2秒前
唐画完成签到 ,获得积分10
2秒前
2秒前
2秒前
淡淡采白关注了科研通微信公众号
3秒前
tY完成签到,获得积分20
3秒前
傲娇的凡旋应助卢健辉采纳,获得10
4秒前
CodeCraft应助calbee采纳,获得10
4秒前
6秒前
6秒前
sw98318完成签到,获得积分10
7秒前
impala完成签到,获得积分10
7秒前
7秒前
欣喜访旋发布了新的文献求助10
7秒前
朱江涛完成签到 ,获得积分10
8秒前
角鸮完成签到,获得积分10
8秒前
zly完成签到 ,获得积分10
9秒前
雨霧雲完成签到,获得积分10
9秒前
qnqqq完成签到 ,获得积分10
10秒前
健壮的涑发布了新的文献求助10
10秒前
11秒前
11秒前
秋山伊夫完成签到,获得积分10
11秒前
入门的橙橙完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808