材料科学
离域电子
轨道能级差
密度泛函理论
过渡金属
氧化还原
电子转移
化学物理
超级电容器
纳米技术
分子
物理化学
计算化学
电化学
物理
催化作用
冶金
有机化学
量子力学
电极
化学
作者
Xia Liu,Yebo Yao,Dewei Wang,Shuyun Yao,Shiyu Wang,Zhenzhen Fu,Yongjia Li,Jinrui Wang,Zishan Hou,Xueying Gao,Zhiyu Yang,Yi‐Ming Yan
标识
DOI:10.1002/aenm.202300384
摘要
Abstract Transition metal oxides (TMOs) suffer from inherently low electronic conductivity, while atom orbital related regulation can be critical to promote the electron transfer kinetics in energy storage applications. Herein, the study utilizes a d–π conjugation strategy to improve the electronic conductivity of TMOs. Briefly, phthalocyanine (Pc) molecules with large conjugated systems are selected to modify transition metal oxide ( δ ‐MnO 2 ). By density functional theory (DFT) simulations, it is clarified that the strong d–π conjugation between MnO 2 and Pc can elevate the orbital energy level of low energy orbital ( d xy ) in MnO 6 units, which further activates the redox activity of d xy . The delocalized π electrons from Pc to MnO 6 unit repel the original d xy electrons, and then elevate the d xy orbital energy level, thus facilitating the electron transfer in MnO 2 ‐Pc. Subsequently, the MnO 2 ‐Pc exhibits a significant specific capacitance of 310 F g −1 at 1 A g −1 . At a power density of 900 W kg −1 , the fabricated asymmetric supercapacitor delivers a maximal energy density of 50.3 Wh kg −1 . This work paves the way to boost the redox activity of transition metal center in TMOs by regulating the orbital energy level, which can be expanded to design other advanced energy materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI