The Zhu-Lu formula: a machine learning-based intraocular lens power calculation formula for highly myopic eyes

正视 数学 人工晶状体度数计算 眼科 人工晶状体 人工智能 算法 医学 计算机科学 视力 折射误差 屈光度
作者
Dongling Guo,Wenwen He,Ling Wei,Yunxiao Song,Jiao Qi,Yunqian Yao,Xu Chen,Jinhai Huang,Yi Lü,Xiangjia Zhu
出处
期刊:Eye and vision [BioMed Central]
卷期号:10 (1) 被引量:9
标识
DOI:10.1186/s40662-023-00342-5
摘要

To develop a novel machine learning-based intraocular lens (IOL) power calculation formula for highly myopic eyes.A total of 1828 eyes (from 1828 highly myopic patients) undergoing cataract surgery in our hospital were used as the internal dataset, and 151 eyes from 151 highly myopic patients from two other hospitals were used as external test dataset. The Zhu-Lu formula was developed based on the eXtreme Gradient Boosting and the support vector regression algorithms. Its accuracy was compared in the internal and external test datasets with the Barrett Universal II (BUII), Emmetropia Verifying Optical (EVO) 2.0, Kane, Pearl-DGS and Radial Basis Function (RBF) 3.0 formulas.In the internal test dataset, the Zhu-Lu, RBF 3.0 and BUII ranked top three from low to high taking into account standard deviations (SDs) of prediction errors (PEs). The Zhu-Lu and RBF 3.0 showed significantly lower median absolute errors (MedAEs) than the other formulas (all P < 0.05). In the external test dataset, the Zhu-Lu, Kane and EVO 2.0 ranked top three from low to high considering SDs of PEs. The Zhu-Lu formula showed a comparable MedAE with BUII and EVO 2.0 but significantly lower than Kane, Pearl-DGS and RBF 3.0 (all P < 0.05). The Zhu-Lu formula ranked first regarding the percentages of eyes within ± 0.50 D of the PE in both test datasets (internal: 80.61%; external: 72.85%). In the axial length subgroup analysis, the PE of the Zhu-Lu stayed stably close to zero in all subgroups.The novel IOL power calculation formula for highly myopic eyes demonstrated improved and stable predictive accuracy compared with other artificial intelligence-based formulas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃冻梨完成签到,获得积分10
刚刚
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
shinysparrow应助科研通管家采纳,获得50
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
稳重的玫瑰完成签到,获得积分20
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
zinnn应助科研通管家采纳,获得10
2秒前
2秒前
yuxiazhengye应助科研通管家采纳,获得20
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
shinysparrow应助科研通管家采纳,获得20
3秒前
归尘发布了新的文献求助20
3秒前
nozero应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
4秒前
nozero应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yuxiazhengye应助科研通管家采纳,获得20
4秒前
FlaviA完成签到,获得积分10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
nozero应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
浑灵安完成签到 ,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wztin完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助典雅的菲音采纳,获得10
6秒前
6秒前
CipherSage应助nothing采纳,获得10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659929
求助须知:如何正确求助?哪些是违规求助? 3221325
关于积分的说明 9739851
捐赠科研通 2930724
什么是DOI,文献DOI怎么找? 1604598
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734376